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Abstract

The aim of this thesis is to improve the understanding of the phenomena involved in

the measurement performed in a blood analyzer, namely the counting and sizing of

red blood cells based on the Coulter effect. Numerical simulations are performed to

predict the dynamics of red blood cells in the measurement regions, and to reproduce

the associated electrical measurement used to count and size the cells. These numerical

simulations are performed in industrial configurations using a numerical tool devel-

oped at IMAG, the YALES2BIO solver. Using the Front-Tracking Immersed Boundary

Method, a deformable particle model for the red blood cell is introduced which takes

the viscosity contrast as well as the mechanical effects of the curvature and elasticity on

the membrane into account. The solver is validated against several test cases spreading

over a large range of regimes and physical effects.

The velocity field in the blood analyzer geometry is found to consist of an intense

axial velocity gradient in the direction of the flow, resulting in a extensional flow at

the micro-orifice, where the measurement is performed. The dynamics of the red blood

cells is studied with numerical simulations with different initial conditions, such as its

position or orientation. They are found to reorient along the main axis of the blood an-

alyzer in all cases. In order to understand the phenomenon, the Keller & Skalak model

is adapted to the case of extensional flows and is found to reproduce the observed trends.

This thesis also presents the reproduction of the electrical measurement used to

count red blood cells and measure their volume distribution. Numerous dynamics sim-

ulations are performed and used to generate the electrical pulse corresponding to the

passage of a red blood cell inside the micro-orifice. The resulting electrical pulse ampli-

tudes are used to characterize the electrical response depending on the initial param-

eters of the simulation by means of a statistical approach. A Monte-Carlo analysis is

performed to quantify the errors on the measurement of cell volume depending on its

orientation and position inside the micro-orifice. This allows to construct the volume

distribution of a well defined population of red blood cells and the characterization of

the associated measurement errors.

Key words: Red Blood Cells, Blood Analyzer, Immersed Boundary Method, Fluid-

Structure Interaction, Electrostatics.
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Résumé

L’objectif de cette thèse est d’améliorer la compréhension des phénomènes jouant un

rôle dans la mesure effectuée dans un analyseur sanguin, en particulier le comptage

et la volumétrie d’une population de globules rouges reposant sur l’effet Coulter. Des

simulations numériques sont effectuées dans le but de prédire la dynamique des globules

rouges dans les zones de mesure et pour reproduire la mesure électrique associée, servant

au comptage et à la volumétrie des cellules. Ces simulations sont effectuées à l’intérieur

de configurations industrielles d’analyseurs sanguins, en utilisant un outil numérique

dévelopé à l’IMAG, le solveur YALES2BIO. En utilisant la méthode des frontières im-

mergées avec suivi de front, un modèle de particule déformable prenant en compte le

contraste de viscosité ainsi que les effets mécaniques de la courbure et de l’élasticité sur

la membrane est introduit. Le solveur est validé grâce à de nombreux cas tests pour

évaluer différents régimes et effets physiques.

L’écoulement fluide dans cette géométrie d’analyseur sanguin est caractérisé par un

fort gradient de vitesse axial dans la direction de l’écoulement, impliquant la présence

d’un écoulement extensionel au niveau du micro-orifice, là où a lieu la mesure. La dy-

namique des globules rouges est étudiée par des simulations numériques pour différentes

conditions initiales, telles que sa position ou son orientation. Il est observé que les glob-

ules rouges se réorientent selon l’axe principal de l’analyseur sanguin dans tous les cas.

Pour comprendre le phénomène, le modèle de Keller & Skalak est adapté au cas des

écoulements extensionels et reproduit correctement les tendances de réorientation.

Cette thèse présente également la reproduction de la mesure électrique utilisée pour

le comptage et la mesure de la distribution des volumes de globules rouges. De nom-

breuses simulations de la dynamique des globules rouges sont effectuées et utilisées

pour générer l’impulsion électrique correspondant au passage du globule rouge dans

le micro-orifice. Les amplitudes d’impulsions électriques résultantes permettent la car-

actérisation de la réponse électrique en fonction des paramètres initiaux de la simulation

par une approche statistique. Une analyse par simulation Monte-Carlo est utilisée pour

la quantification des erreurs de mesure liées à l’orientation et la position des globules

rouges dans le micro-orifice. Ceci permet la génération d’une distribution de volume

mesurée pour une population de globules rouges bien définie et la caractérisation des

erreurs de mesure associées.

Mots clefs: Globules Rouges, Analyseur Sanguin, Méthode des Frontières Immergées,

Intéraction Fluide-Structure, Électrostatique.
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et Simon Mendez. Vous m’avez permis au fil des années d’aiguiser mes réflexions et
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aux problèmes que j’ai pu rencontrer durant ma thèse, qu’ils soient d’ordre personnel
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de ce travail: Christophe Chnafa, Julien Sigüenza, Julien Stoehr, Myriam Tami, Marco
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The motivations behind this work and the ones of Horiba Medical, the company

with which we collaborated during this thesis, are first presented. Then, the role and

contents of blood as well as a few haemopathies are described. An explanation of the

main principles of blood analyzers and their usage are shown. Finally, a summary of

the current state of the art of numerical simulations of red blood cells is presented.
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2 CHAPTER 1. INTRODUCTION

1.1 Motivations

The first motivation for this work originates from Horiba Medical, a company designing

blood analyzers and other medical devices. Aside from the obvious technological, indus-

trial and economical motivations from Horiba, the main objective is the understanding

of the red blood cell dynamics in these devices, both in terms of pure application in the

medical facilities and in terms of scientific progress in the field of deformable particles

dynamics in complex flows.

1.1.1 Horiba & Horiba Medical

The Horiba Group is an international company operating worldwide with a very wide

spectrum of instruments and systems for various applications (process and environmen-

tal monitoring, in-vitro medical diagnoses, semiconductor manufacturing and metrol-

ogy) as well as a broad range of scientific research and development and quality control

measurements. Horiba Medical is Horiba’s segment dedicated to the design, develop-

ment and distribution of medical devices mainly destined to biological analysis in med-

ical laboratories. Horiba Medical equips numerous laboratories throughout the world,

producing approximately 7 500 automated analyzers per year and over 10 000 tons of

reagents used to operate the analyzers.

Horiba Medical is dedicated to the improvement of the quality of its devices in order

to provide the most accurate, reliable and fastest products on the market. The company

hires over 1,100 employees in 5 production centers (Japan, China, France, Brazil, India)

and 2 R&D centers (Japan, France). Working with around 100 distributors to supply

around 30 000 laboratories worldwide, the company sales reached 198 million euros in

2014 and represents 17% of the company sales for all segments. The company is also

interested in multiplying the tools available for blood analysis with many innovative

devices being in development and invests around 10% of the company sales in R&D. In

this context, there is a need for a versatile framework of tools aimed at the design of

blood analyzers of all sorts. On the one hand, Horiba Medical has dedicated teams of

experimentalists focused on the production of prototypes and on the thorough testing of

these units. These teams have been active for many years. On the other hand, dedicated

R&D teams work on the prior design of such devices using commercial numerical tools

which often show limitations in complex geometries and flows. In particular, commercial

numerical tools cannot handle the complexity of the red blood cells dynamics when

submitted to an outer flow. This is why a powerful numerical framework would be an

important asset to Horiba Medical, as it would let the company master the functioning of

their devices, allowing conscious design choices to maximize efficiency and profitability.
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1.2 Blood

1.2.1 Role

Blood is a vital body fluid that aims at delivering the necessary substances (nutrients

and oxygen) to the organs, and transporting waste products such as carbon dioxide out

of the organism to evacuation in the kidneys, the lungs, the intestines or the spleen.

It travels over the 100 000 km of the circulatory system, being pumped by the heart

through the many ramifications of the vascular system vessels. Most tissues in the body

have to be vascularized, otherwise they would die.

Blood is a complex substance composed of a fluid, the plasma, in which various particles

are suspended. These particles are white blood cells, platelets and mostly red blood

cells, representing around 45% of the whole blood volume. These blood cells are created

during a process called haematopoiesis, occurring in the bone marrow (and the thymus

for some types of white blood cells). At the end of their life span, these blood cells are

destroyed by macrophages in the kidney, the spleen or the bone marrow.

1.2.2 Contents

Plasma

Plasma is the carrying fluid of blood, where the previously mentioned cells are suspended

and transported inside the organism through the vascular network. It contains around

90% of water along with a wide variety of elements, such as mineral salts, dissolved ions,

organic molecules (carbohydrates, lipids, proteins) and metabolic wastes like urea, uric

acid or bilirubin, as well as hormones. Altogether, these components and the plasmatic

proteins contribute to the acid-base homeostasis of blood (pH), its viscosity and the

behavior of the blood cells membrane by maintaining the adequate osmotic pressure

levels. It constitutes around 45% of the whole blood volume, with a viscosity close to

the one of water.

White Blood Cells

White blood cells, or leucocytes, are blood cells with a nucleus. They are dedicated to

the defense of the immune system against bacterial infections and other various threats.

There are many different types of white blood cells, each one being specialized in the

treatment of a specific threat (granulocytes, lymphocytes and monocytes). They repre-

sent about 0.2% of the blood with 4 000 to 11 000 cells per cubic millimeter of blood.

They are usually bigger than red blood cells with a diameter comprised between 7 and

20 µm depending on their type and live up to several days on average.
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Platelets

Platelets, or thrombocytes, are anucleate cells, involved in the coagulation mechanism

(hemostatis) to repair ruptures in the vascular endothelium. They are of biconvex

discoid shape and are the result of the fragmentation of bigger cells (megakaryocyte)

that burst when entering the circulatory system. They are smaller than red and white

blood cells, with a maximum diameter of 2 to 3 µm and live up to 10 days. They

average count of platelets is 150 000 to 400 000 per cubic millimeter of blood.

Red blood cells

Red blood cells, or erythrocytes, are anucleate cells constituted by a membrane enclosing

an internal fluid, the cytoplasm. Red blood cells travel more than 200 km in the

circulatory system during their 120 days life span. The average count of red blood cells

is 4 to 6 million cells per cubic millimeter of blood.

At rest, red blood cells generally have the shape of a discocyte. Their average dimensions

as measured by Evans and Fung [61] are presented on Fig. 1.1. Other measurements

are also presented by Fung [80].

Figure 1.1: Average dimensions of a human red blood cells as reported by Evans and
Fung [61].

The cytoplasm contains water and haemoglobin, a protein accounting for more than

90% of the red blood cell dry mass. Haemoglobin is the substance that carries and

releases oxygen from the respiratory organs to the rest of the body, thanks to its iron

core that can bind oxygen molecules. The cytoplasm viscosity is 6 to 8 times greater than

the surrounding plasma viscosity. Red blood cells are subjected to high deformations

when passing through the multiple vessels of the circulatory system which radius can

be less than 3 µm, which is lower than the red blood cells characteristic dimension.

Many obstacles are also in the way of red blood cells through the organism: atheroma

plaques, clogging of the vessels with lipids and platelets, turbulence in the blood flow,

vasoconstriction, spleen slits and the relative cluttering due to the presence of a large

amount of cells in blood. In order to withstand these difficulties, the red blood cells

are required to be able to deform and stretch, while keeping their integrity. These

qualities are ensured by its geometrical nature on the one hand, with its surface being
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greater than the one of a sphere with the same volume, resulting in its deflated aspect,

and on the other hand with its membrane structure. The red blood cells membrane

is a complex structure composed by a lipid bilayer and an underlying protein network,

the cytoskeleton; these components are linked via embedded transmembrane proteins

(Fig. 1.2). These two structures constituting the membrane are responsible for the

complex mechanics associated to the deformation of red blood cells (see Chapter 2 of

Lim et al. [119] for more details):

• The lipid bilayer (A on Fig. 1.2) gives to the membrane its resistance against area

dilation and bending.

• The cytoskeleton (B on Fig. 1.2) gives to the membrane its resistance against

shear deformations and area dilation (though with a much smaller modulus than

the lipid bilayer).

Figure 1.2: Schematic representation of the red blood cells membrane as presented by
Mohandas and Evans [136].

Cell and membrane geometry

Red cell area (µm2) ARBC = 113.8± 27.6
Red cell volume (µm3) VRBC = 89.4± 17.6
Scale length (µm) RRBC = 2.76± 0.18
Mechanical moduli

Shear modulus (N.m−1) Es = 5.5± 3.3× 10−6

Area dilation modulus (N.m−1) Ea = 0.39± 0.11
Bending modulus (N.m) Eb = 1.14± 0.9× 10−19

Surface shear viscosity (N.s/m) µS = 0.515± 0.19× 10−6

Table 1.1: Typical values and dispersion of the red blood cell geometrical and mechanical
parameters [119, 184].

A summary of the red blood cells geometrical and mechanical parameters are pre-

sented in Table 1.1. These parameters as well as the physiological construction of the
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membrane ensure the solidity and deformability of the red blood cells all along their

travel in the circulatory system. In this thesis, because of the numerical method cho-

sen for the modeling of the red blood cell, the surface shear viscosity (the membrane

viscosity) is not taken into account.

1.2.3 Haemopathies

Examples of haemopathies

Many diseases, called haemopathies, are related to the blood cells population, either on

the numbering itself, their mechanical and geometrical properties or the properties of

the blood. Those diseases include:

• Leukemia, a group of cancers resulting in an abnormal production of white blood

cells. It is the most common type of cancer in children and is still the cause of

more than 200, 000 deaths worldwide each year [186].

• Drepanocytosis, or sickle-cell disease, where red blood cells tend to assume a

rigid and unusual shape, causes severe infections and strokes. It is identified as a

haemoglobinopathy, corresponding to an anomaly in the hemoglobin molecule. It

also causes more than 200, 000 deaths worldwide each year often associated with

a decrease in haemoglobin.

• Myelodysplastic syndrome, a medical condition resulting in a low production of

blood cells causing an increased number of infections and subcutaneous hemor-

rhagings. Notably, signs of anemia (low red blood cells count or reduced haemoglobin)

or thrombocytopenia (low platelet count) are witnessed.

These diseases, along with others, are still causing an important number of deaths every

year. The ability for physicians to perform a precise, fast and reliable diagnosis is thus

of first importance.

Anemia

In several blood related diseases, signs of anemia are witnessed in patients, which can be

detected using blood analyzers. Anemia comes in many forms but invariably translates

in a reduced circulation of the haemoglobin in the blood, causing an inefficient transport

of dioxygen in the circulatory system. A patient is considered anemic when his/her

haemoglobin rate is under a threshold value, which depends on the type of population

considered: adult male (13g/100ml), adult female/children (12g/100ml) or newborn

(14g/100ml). The three main types of anemia are described in the following figures,

where the haematocrit is the volumetric fraction of red blood cells in blood.

• Microcytic anemia: the red blood cell count is normal but the mean corpuscular

volume is decreased. The haemoglobin rate in a blood sample and haematocrit

are thus reduced.
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Normal population Anemic population

Cell volume
Normal (=)

Cell count
Normal (=)

Cell volume
Decreased (↓)

Cell count
Normal (=)

Figure 1.3: Schematic representation of a red blood cell population under mycrocytic
anemia.

• Normocytic anemia: the red blood cell count is decreased but the mean corpus-

cular volume is normal. The haematocrit is decreased and the haemoglobin rate

is decreased.

Normal population Anemic population

Cell volume
Normal (=)

Cell count
Normal (=)

Cell volume
Normal (=)

Cell count
Decreased (↓)

Figure 1.4: Schematic representation of a red blood cell population under normocytic
anemia.

• Macrocytic anemia: the red blood cell count is low and the mean corpuscular

volume is increased; it is often associated with a reduced haemoglobin content per

cell. The haematocrit may be increased but the haemoglobin rate is decreased.
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Normal population Anemic population

Cell volume
Normal (=)

Cell count
Normal (=)

Cell volume
Increased (↑)
Cell count

Decreased (↓)
+ reduced Hb content

Figure 1.5: Schematic representation of a red blood cell population under macrocytic
anemia.

All these conditions lead to a diminution of the haemoglobin level in blood, provok-

ing various undesirable symptoms for the patient and being indicators of more serious

diseases that would require further examination. These three types of anemia can be

detected by the use of blood analyzers since they affect the red blood cell count and

mean corpuscular volume values.

1.3 Blood analyzers

1.3.1 Usage

An important objective of the diagnosis is to characterize the hematologic state of a

patient, namely through the complete blood count (CBC). This is done thanks to blood

analyzers. Blood analyzers have been used in most diagnoses for more than 40 years

and their purpose is to count and size living cells and microparticles [1],[176],[199],[92],

allowing the physician to obtain the CBC of a patient. A traditional complete blood

count provides a detailed summary of the current state of a patient’s hematological

system, allowing the determination of the following quantities:

• Red blood cell count (4 to 6 million cells per mm3),

• white blood cell count (4000 to 10000 cells per mm3),

• platelets count (150000 to 400000 cells per mm3),

• the total oxygen carrying capacity through the haemoglobin (120 to 175 µg/mm3)

and haematocrit levels (31% to 53%),

• the red blood cells mean corpuscular volume (MCV) (80 to 100 fL),
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• the mean corpuscular haemoglobin (MCH), which is the average amount of haemoglobin

per red blood cell (27 to 31 picograms of haemoglobin per cell),

• the mean corpuscular haemoglobin concentration (MCHC) (320 to 360 µg/mm3),

• the red blood cell volume distribution width (RDW), which corresponds to the

variation in the cells volume of the red blood cell population (11.5% to 14.5%):

RDW =

(

Standard deviation of MCV

mean MCV

)

× 100 (1.1)

• Mean Platelets Volume (MPV) (7.5 to 11.5 femtoliters (fL)).

A variation in the number of red blood cells can be caused by various parameters,

mostly pathologies. Namely, leukemias and haemopathies tend to modify the red blood

cell count. The white blood cells count can be seen to vary in the event of an infection,

when the organism is defending against a disease or when autoimmune disorders occur

and destroy white blood cells [? ]. As for the other blood cells, the platelets population

varies when their production in the bone marrow is abnormal, which can be caused by

cancers or other forms of bone marrow dysfunctions. The mean corpuscular volume

(MCV) and haematocrit levels which are closely related are subjected to variations

in the case of various diseases that cause a decrease in the volume of the red cell

population and/or a decrease of the number of red blood cells. The mean corpuscular

haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values

can vary because of mutations in the haemoglobin protein or diseases that cause a

modification in the shape, size or integrity of red blood cells. The value of the red

blood cell distribution width (RDW) expresses the variation of the corpuscular volume

in a red blood cell population. High and low RDW values can be measured in various

pathologies, such as anemias [? ].

When blood cells age in the circulatory system, many of their characteristics change

during their life span: their volume decreases of around 20%, the haemoglobin mass

decreases of 15%, the surface/volume ratio increases and the surface area decreases.

Young red blood cells are known to be larger than mature cells, and the change in their

volume is seen to be fast, occurring within the first week of circulation. Later volume

changes are slower but always continues to decrease over a red blood cell lifetime.

Red blood cells of higher (lower) volume can thus be over-represented in the volume

distribution if most of the population is young (old), which can be caused by various

pathologies, either way [91].

Thus, the quantities presented previously can be used in the diagnosis of several

blood related diseases. In addition, the measurement of these quantities allows the

detection of infections (increased white blood cell count) , drug intoxication (decreased

platelets count), iron deficiency (decreased red blood cell count and decreased MCV) and

other pathologies that are not directly blood related disease. A blood analyzer is able to

measure some of these quantities thanks to the dielectric nature of red blood cells and
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platelets, namely the MCV, RBC count, RDW, white blood cell count, platelet count

and MPV. The principle of this kind of measurement is detailed in the next section. The

hemoglobin content and concentration is measured through a destructive process that

is not covered in this thesis, where the red blood cells are chemically forced to release

their hemoglobin content, the latter being then measured with absorption spectrometry.

1.3.2 Coulter effect

A blood analyzer provides part of the CBC by means of the Coulter effect: a blood

cell, considered insulating, is driven through a narrow channel filled with conductive

fluid, where a constant electrical field is imposed. The perturbation created by the cell

passing through this orifice is then measured and its amplitude is related to the cell

volume (see Fig. 1.6) [41, 42].

a) b) c)

e1

e2

C1

C2

C1

C2

time

S
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al

Figure 1.6: Schematic representation of the electrical measurement process inside a
blood analyzer. (a) A concentrated electrical field is imposed in the orifice using elec-
trodes e1 and e2. b) Two red blood cells of different volumes pass through the orifice.
c) Two pulses of different amplitudes are measured.

Repeating this operation for a larger sample (namely, a patient’s blood sample) gives

access to the red blood cells count, the mean corpuscular volume (MCV) and red cell

distribution width (RDW) defining the hematologic state of the patient. The Coulter

effect is the basis of every commercialized blood analyzer to date, even though its first

practical use has been conceptualized more than 60 years ago.

Over the years, more and more sophisticated blood analyzers have been developed, al-

lowing the probing of a large spectrum of quantities thanks to flow cytometry. Notably

cell pigmentation, protein expression or DNA content were added as measurable quan-

tities using optical instruments in combination with the Coulter effect. Nevertheless, a

deep understanding of the dynamics of blood cells in blood analyzers and its influence

on the CBC quantities is yet to be achieved.
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1.3.3 Hydrofocalization

The Coulter effect accurately measures the volume of red blood cells but suffers of inac-

curacies depending on the cell orientation and position. These errors usually generate

over-estimates of the higher volume red blood cell population. In order to reduce errors

generated by the various trajectories of red blood cells within the orifice, the hydrofo-

calization technique is often used. Figure 1.7 shows a schematic representation of the

Orifice

Blood sample
Sheathing Sheathing

e1

e2

Figure 1.7: Schematic representation of a blood analyzer orifice neighborhood, with e1

and e2 the cathode and anode, respectively.

hydrofocalization technique. Considering a symmetry of revolution around the blood

analyzer main axis, a sheath flow is introduced all around the blood sample injector.

This sheath flow has a greater velocity than the sample flow and restrains the blood

sample to a defined region which depends on the respective flow rates of the blood

sample and sheath flows. An example of 2-dimension hydrofocusing is shown in Fig. 1.8

with experimental results from Lee et al. [113]. It is a different setup, but it is easy

to see that red blood cells will most likely stay in the darker region and be focused in

the center of the orifice. This effect ensures that almost all red blood cells arrive in the

measuring orifice centered and thus reduces the measurement errors.

The profile of the velocity field in hydrofocalized systems suggests that red blood cells

experiment an important velocity gradient in the direction of the flow. This velocity

gradient, in addition to the intended centering of the cells on the micro-orifice axis,

should modify the orientation and shape of the cells during their passage into the micro-

orifice. This reorientation effect is well-known for solid particles and elongated colloids

and will be studied in the case of red blood cells in Chapter 3 and 4.
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Qs/Qi = 0.1 Qs/Qi = 0.5 Qs/Qi = 1.0

Qs/Qi = 2.0 Qs/Qi = 4.0 Qs/Qi = 8.0

Figure 1.8: Experimental images of the symmetric hydrodynamic focusing effect in
microchannels with an aspect ratio of 1.78 and different flow rate ratios, where Qs is
the sheathing flowrate and Qi the sample flowrate, from Lee et al. [113].

1.4 Numerical simulation of red blood cells and blood

analyzers

As stated previously, the goal of understanding the dynamics of red blood cells in blood

analyzers is tackled using numerical simulations. This section aims at presenting an

overlook of the numerical simulations of particles in blood analyzers presented in the

literature; Then, summarizing the numerical simulation of red blood cells and its diffi-

culties, as well as replacing the choices presented throughout this thesis in the context

of the current scientific advancement in the field. An extensive review was recently pub-

lished by Freund [77] where he proposed a summary of the state-of-the-art of numerical

simulations.

1.4.1 Numerical simulation of the red blood cell dynamics

The red blood cell membrane: a complex structure

Red blood cells have been presented in detail above in this introduction. As a reminder,

they are composed by a cytoplasm, which is an incompressible Newtonian fluid rich in

hemoglobin. It is enclosed by a visco-elastic membrane, consisting of a lipid bilayer

and a protein cytoskeleton. This membrane is almost incompressible as it strongly

resists changes of its area. It also resists to shear and bending. These characteristics

provide the red blood cells with their deformability. As long as surface and volume are

conserved, they deform easily. The movement of red blood cells is usually either studied
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directly or by observing model particles, such as capsules or vesicles. Contrary to red

blood cells and capsules, vesicles have a membrane that does not show resistance to

shear, which results in vesicles experiencing slightly different movements [5].

Experiments are obviously an indispensable source of information and data. However,

they have some limitations: the small length scales involved make the measurement of

quantitative information difficult and the density of the red blood cells prevent a clear

observation of the flow when the haematocrit is high. As a consequence, numerous

analytical and numerical descriptions have been proposed over the last 30 years.

Fluid-structure interaction

When flowing, deformations of red blood cells can be impressive, especially in small

tubes or channels, as shown by Fig. 1.9, for example.

Figure 1.9: From Abkarian et al. (2008) [2]. Time-lapse sequence of the deformation of
a healthy RBC in a 5 µm channel.

This results from the fluid-structure interaction between the external fluid (plasma

in blood), the internal fluid (cytoplasm) and the red blood cell membrane. The fluid-

structure interaction is actually the reason why computing flows of red blood cells is a

numerical challenge:

• Red blood cells deform easily, and their shape may change continuously. As a

consequence, they cannot be defined only with the position of the center of gravity

and the orientation, as for non-deformable objects. Moreover, shape changes are

large, so the small-deformation hypothesis cannot be used;

• at characteristic flow scales relevant to micro-circulation, red blood cells cannot

be considered as particles flowing passively with the fluid: flow deforms the red

blood cells, which in turn modify the flow;

• the mechanics of the red blood cell membrane is complex. ‘Macroscopic’ properties

can be defined, but the membrane is inhomogeneous. Membrane modeling is thus

a difficult task, where several levels of modeling, of increasing complexity, can be

used;

• in blood, hematocrit is of order of 45%. This high density population of red blood

cells implies constant interactions between each other. At high shear rates, this
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interaction is limited to a dynamic interaction, but when the flow time scale is

larger, red blood cells have time to aggregate, resulting in an increase of the blood

viscosity [31, 80, 81, 159];

• when undergoing large deformations (often in non-physiological contexts, where

shear rates can be higher than in human circulation), hemolysis can occur, where

the red blood cell membrane breaks up or leaks part of the intra-cellular haemoglobin.

For all these reasons, computing the deformation and the dynamics of red blood cells

in complex flows is a challenge. Such a challenge is tackled more and more efficiently,

with the development of High Performance Computing over the last decades. The

evolution of the analytical and numerical techniques developed over the years to predict

the behavior of deformable particles in flows is reviewed in the next section.

1.4.2 Literature review: a historical perspective

Analytical prediction of the behavior of deformable particles in flows were mainly devel-

oped over the last 30 years, notably thanks to the major contribution of Barthès-Biesel

[17, 20, 21]. Barthès-Biesel and co-workers introduced the ”capsule” model which refers

to a deformable particle composed by an elastic membrane enclosing a drop of fluid.

It was interestingly introduced as a model to study red blood cells in flows. Initially,

Barthès-Biesel and co-workers focused on the flow of capsules of spherical reference

shape undergoing small deformations, considering an infinitely thin membrane. This

can be considered as a good approximation for red blood cells, since their membrane

is only a few nanometers thick. Under this hypothesis and assuming Stokes flow, they

were able to determine analytically the time evolution of micro-capsules in linear flows,

for different membrane mechanical laws.

To tackle large deformations of capsules, the Boundary Element Method (BEM) was in-

troduced by the group of Barthès-Biesel [116, 161] and by Pozrikidis [152, 153, 154, 162].

The local deformation is computed over a discretized membrane and related to the local

stress through the membrane mechanical law. The BEM allows the computation of the

fluid flow in an infinite domain by integrating the membrane forces over the membrane

surface, while considering a bounded domain increases the problem complexity and im-

plies loss of accuracy [93, 94]. It takes advantage of the linearity of the Stokes flow

describing the fluid motion.

In parallel, vesicles started to receive attention as they can be considered as an

alternate model for red blood cells. Vesicles refer to deformable particles consisting of

a drop of fluid enclosed by a fluidic membrane: generally, the vesicle membrane is a

bilayer of amphiphilic lipid molecules [167]. The vesicle membrane is different from the

membrane of elastic capsules as defined by Barthès-Biesel and is often considered as a

two-dimensional perfect fluid layer:

• it is mainly incompressible and the distance between lipid molecules of a layer

does not change;
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• it does not resist shear;

• however, it is not an interface: owing to its bilayer nature, it shows bending

resistance, responsible for the large variety of shapes observable for vesicles [166,

167, 169, 170].

The pioneer work of Seifert is fundamental in the field, where he either used the small

deformation theory and Lamb’s solution [168] (as Barthès-Biesel earlier for capsules) or

the BEM for triangulated surfaces [108]. One of his major contribution is also his work

on vesicle morphology [166, 167, 169, 170].

In the 2000s, various approaches were introduced to compute the flow around and

inside deformable fluidic particles undergoing large deformations. In the vast majority

of the cases, they deal with three-dimensional deformable particles consisting of an

infinitely thin membrane enclosing a simple Newtonian fluid. Both the internal and

the external fluids are modeled and the particle can evolve in a more or less complex

environment.

From a global point of view, progress over the last 15 years in the simulation of

deformable particles is impressive. Simulations account for:

• different fluid properties inside and outside the membrane;

• various mechanical behavior for the membrane: resistance to area changes, shear,

bending. The membrane can be visco-elastic;

• aggregation models have been proposed to model the clustering of red blood cells

in low-shear flows and its consequences on blood viscosity;

• numerical simulations of dense suspensions are being published in the 2010s. Sim-

ulations with several thousands of cells are now conceivable (though computation-

ally expensive).

However, simulations of red blood cells are far from being perfect: membrane me-

chanics can still be improved, validation of the results is still problematic and sometimes

neglected to show impressive but non-validated calculations. In addition, red blood cells

are often considered to flow in simple and low-Reynolds number flows. Such configura-

tions, which correspond to physiological conditions, are not relevant to some extreme

non-physiological conditions, as encountered in some medical devices. Haemolysis is

also a challenge for future research on simulations of red blood cells in flows.

1.4.3 Description of existing numerical approaches for deformable

particles

From the methodological point of view, the approaches encountered in the literature

mainly differ from each other on the numerical treatment of the membrane. The physics

of the membrane is not a criterion to differentiate the numerical methods as most papers
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present results using several membrane constitutive laws. Depending on the research

groups, fluid flow and membrane mechanics are treated using numerical different meth-

ods: first, the numerical methods are separated in three groups, depending on the way

the membrane is treated. Then, the numerical method used to solve the fluid flow will

separate the existing approaches in three other groups.

Membrane approaches

The continuous membrane approach

This approach is the one used by the groups of Barthès-Biesel and Pozrikidis [17, 20,

21, 108, 116, 152, 153, 154, 161, 162, 168]. The membrane is considered as a two di-

mensional surface of known mechanical properties: incompressible, elastic, visco-elastic,

hyperelastic, resisting to bending, etc. The membrane is discretized and the local mem-

brane forces related to its deformation state are computed. Discretization can be done

through triangulation and spectral representation of the membrane [210, 219]. Forces

are then calculated using finite elements, thin shell theory or others numerical meth-

ods. The majority of the numerical methods are based on the continuous membrane

approach[13, 27, 51, 52, 62, 76, 93, 107, 109, 138, 145, 163, 189, 210].

The discrete membrane approach

Alternatively, the membrane can be considered as a set of particles related by a spring

network [64, 65, 66, 68, 103, 144, 151]. In this approach, there is no notion of discretiza-

tion of a continuous membrane. Only elementary effects are defined by interaction of

neighboring particles constitutive of the membrane. The physical parameters involved

in the interaction between particles can be related to macroscopic properties of the

cell. Gompper and co-workers use a particular membrane model, mixing the discrete

membrane and the continuous membrane approach to model red blood cells as ‘elastic

vesicles’ [129, 130, 140, 141, 142, 143]. A discrete membrane approach is also used by

Ismail and Faure et al. [63, 97].

The implicit membrane approach

In this approach, the membrane is not represented directly by a triangulated surface

or a set of markers but an implicit definition of the membrane is used. A function Φ

is defined over the fluid domain and an iso-value of this function marks the location of

the membrane (typically, Φ = 0). The field of Φ can be transported using an Eulerian

equation of transport, which is very convenient for parallel computing: only one grid

is used for the computations, avoiding issues related to the exchange of information

between the fluid and the membrane(s). Derivatives of Φ are conveniently used to

reconstruct membrane information, as the curvature for example. A level-set approach

has been developed by Cottet and co-workers [39, 40, 126, 127, 133] and more recently by

Doyeux et al. [54]. A phase-field approach is also introduced by Misbah and co-workers

[23, 25, 83].
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Fluid approaches

BEM approach

It has been seen that if the flow is described by the Stokes equation, the flow solution

can be given using the Boundary Element Method. This is the approach notably used

by Barthès-Biesel and co-workers [58, 75, 93, 94, 110, 111, 112, 116, 161, 200, 201],

Pozrikidis [155, 157, 158],Zhao and Freund [78, 139, 210, 211, 212, 213, 214, 216],

Boedec and co-workers [27, 188] and others [51, 52, 145, 189].

Continuous approach

More classical computational fluid dynamics (CFD) methods can also be used: finite

differences are used by Popel [13, 60, 208, 209] and co-workers, Bagchi and co-workers

[12, 14, 15, 16, 38, 48, 50, 207, 217] and Luo [124]. Finite differences are also used in

the level-set formulation by Cottet and co-workers [39, 40, 126, 127, 133] or Klöpell

[107]. Misbah et al. use periodical domain and Fourier transforms to discretize the

space operators [23, 25, 83]. Finite element methods have also been used by several

authors [54, 97, 121].

LBM approach

The most famous one is the lattice-Boltzmann method (LBM) [6, 30]. Fluid flow is rep-

resented through the resolution of the motion of particles streaming and colliding. Un-

der certain assumptions (as low Mach number), lattice Bolzmann equations are shown

to tend towards the Navier-Stokes equations. LBM is used by Aidun and co-workers

[6, 35, 125, 163, 204], Sui et al. [179, 180, 181] and Krüger et al. [109].

Particle approach

Recently, particle methods have developed tremendously. Dissipative Particle Dynamics

(DPD) is used by Karniadakis et al. [64, 65, 66, 68, 144, 151]. Gompper and co-workers

use the multiparticle collision dynamics (MPC) framework [129, 130, 140, 141, 142, 143].

1.4.4 Simulation of red blood cells: state of the art

Numerical simulation is expected to provide information otherwise impossible to get

analytically or by experimental means. In spite of the Stokesian character of the flow

around small cells, numerical simulations are challenging due to the continuous defor-

mation of the cells. Pozrikidis is one of the pioneers in the field of numerical simu-

lations for red blood cells, using Stokes flow approximation and thin shell theory, his

group [154, 155, 156, 157, 162] obtained a boundary integral formulation predicting

the flow inside and outside a deforming membrane. The deformation of a unique cell

in shear flow has been studied [157], as well as the axisymmetric movement of files

of red blood cells in a cylindrical tube of small diameter [158]. This method suffered

from numerical instabilities in some cases, which has led Kessler et al. [105] and Zhao

et al. [210] to propose further improvements. Results shown thanks to the spectral
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boundary integral method by Zhao et al. [139, 210, 215] are impressive (see Fig 1.10):

this method is able to account for numerous cells, showing complex shape deforma-

tion without suffering from the numerical problems encountered in classical boundary

integral methods. The group of Barthès-Biesel has also used the boundary element

method (BEM) to study the movement, buckling and interaction of capsules in shear

flows [75, 110, 111, 112, 200, 201].

This method, despite its efficiency and precision, has some limitations. For example,

in a situation where the zero Reynolds number assumption cannot be made (a situation

encountered for blood flows in large veins and arteries, or even more in artificial devices

such as blood analyzers), the resulting non-linearities of the fluid equations clearly

rule out the use of the Green’s functions techniques on which the BEM method is

based. Nevertheless, BEM results can be considered as reference numerical data. Few

numerical errors are made and their results can be considered as ”exact” to validate

other simulation techniques. This is also true for the early work from Barthès-Biesel

and co-workers, limited to small deformations [17, 20, 21]. Note that the BEM is still

being developed by several groups. High-quality numerical results for vesicles were

recently obtained, notably for sedimentation of vesicles, using a BEM framework [26,

27, 193, 194, 195]. In addition, sophisticated theory for small deformations around a

spherical shape continues to be used by different groups to predict capsule or vesicle

small deformations in flows [26, 135, 198].

Figure 1.10: From Zhao et al. (2010) [210]. Periodic three-dimensional cellular flow
in a cylindrical tube of diameter 16.9 µm. Simulation with BEM. Flow is from left to
right in the side view and toward the viewer in the end view.

Over the last years, several authors have focused on the use of the lattice-Boltzmann

method (LBM). Sui and co-workers [179, 180, 181] have notably introduced the concept

of immersed boundaries in the lattice-Boltzmann framework. They coupled this formu-

lation with a finite element method used to obtain the force applied on the discretized

surface of the cell. Aidun et al. [6, 7, 125, 204] also combine LBM and finite element

analysis for the membrane, obtaining simulation results for dense suspensions (up to

50% in volume). All these simulations were able to show good qualitative behavior:

Sui et al. [181] obtained the different types of motion of isolated capsule in shear flow

(tumbling, tank treading and swinging) and the dependence on the shear rate applied.
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However, intermittent behavior observed in experiments [3] was not reproduced until

recently by Cordasco et al. [37]. MacMeccan et al. [125] obtained the well-known shear-

thinning behavior of blood in their simulation of a suspension of capsules, the viscosity

of the suspension decreasing when shear stress is increased. However, they obtained a

suspension viscosity significantly under-estimating blood viscosity.

More classical CFD was also used to perform simulations of red blood cells, but the de-

formation of the cells remains an important challenge. Lagrangian-Eulerian approaches

are expected to be very precise, but reconstruction of the whole volumetric mesh at

each time step is too expensive in terms of computational cost. Bi-dimensional and

tri-dimensional simulations have been reported [107, 121], but they will be impossible

to extend to simulations of 3D dense suspensions. Another possibility is to use full Eu-

lerian approaches: Cottet et al. [39, 40], Maitre [126] and Maitre et al. [127] proposed

one using a level set approach where the Navier-Stokes equations are modified by adding

membrane forces related to membrane area changes and curvature. Though localized,

these forces are smoothed over a small number of cells to enable correct resolution.

They were able to obtain the biconcave discocyte shape at rest [127], as well as the tank

treading and tumbling movements [126] in simple shear flow. A full Eulerian approach

has also been developed by Misbah and co-workers, and applied specifically to vesicles

[23, 25, 83]. Misbah also used an analytical approach to study the vacillating-breathing

vesicle regime [135]. Immersed boundary methods were used by Bagchi et al. [13],

Dooley and Quinlan [53] and Zhang et al. [208, 209] in 2D, using the front tracking

method in a finite-difference framework. More recently, an important effort has been

made in Bagchi’s group to perform 3D simulations. Doddi and Bagchi extended the

method to 3D simulations [12, 14, 15, 16, 48, 50, 207, 217]. Li and Sarkar also presented

front-tracking simulations [115].

The years 2010s have also seen the development of a new framework to calculate flows

of red blood cells, coupling particle methods (Dissipative Particle Dynamics [64, 65, 66,

68, 144, 151], Multi-particle Collision dynamics [129, 130, 140, 141, 142, 143], Moving

particle semi-implicit method [103]) and particle methods to describe the membrane

behavior. The membrane is described by particles (as markers) which interact with

each other locally. Particles are organized in a triangulated network. Simple inter-

action between particles is imposed: particles are assumed to be linked by springs to

model the membrane elasticity, modified by a viscous term to recover the visco-elastic

behavior of the membrane. Springs contribution also accounts for a term involving the

temperature, to model thermal fluctuations of the membrane [65]. The main advantage

of such a method is that macroscopic behavior of the membrane emerges from individ-

ual local interactions between particles modeling the membrane. Constants involved

in the particle interaction models can be related analytically to macroscopic constants

measured experimentally, for instance. To date, such models for deformable membranes

are probably the most accurate to represent red blood cell membranes.
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More recently, the effect of the reference shape of red blood cells has been investi-

gated. The spheroidal stress-free configuration has been used instead of the usual bicon-

cave red cell shape. It notably showed the importance of the reference shape in retrieving

the transitions between the various regimes of the cell in shear flows [38, 107, 147, 189].

1.4.5 Configurations of interest in numerical studies of flows of

deformable particles

Blood analyzers are complex devices and the study of the dynamics of cells within them

is an active field of research [182]. The size of these devices, allowing no direct optical

access, as well as the high velocity flows of several meters per second in the system,

are important obstacles for experimentalists. An elaborate numerical framework and

powerful solver are required to simulate the dynamics of deformable cells with sufficient

accuracy and handle complex geometries encountered in blood analyzers.

In the literature, the particles considered in numerical simulations usually are bigger

and rigid. In addition, most of ex-vivo studies are performed in simplified geometries

with low Reynolds number flows, which is different from the velocity fields commonly

encountered in blood analyzers [24, 96, 98]. Most of the numerical studies focus on the

characterization of the electrical pulse more than on the dynamics of the cells them-

selves [160, 178]. Many questions remain unanswered, notably on the cell dynamics in

such systems and its influence on the measured electrical pulse.

It is also of interest to understand the effect of the electrical field on the cell trajectory

and shape with effects such as dielectrophoresis, electrorotation, etc. [47, 149, 197]. Fi-

nally, although the consequence of red blood cell deformation [11, 88] and integrity [10,

44] on its impedance has been investigated, its effect on electrical pulse measurements

is still unknown. Although some of the publications discuss more complex effects such

as electrokinetic forces, electrical double layer [86] or hydrofocusing [113], there is a

missing link between the cells dynamics and the electrical pulse and there is no clear

evidence on the nature of the dynamics of deformable particles in the high Reynolds

number flows of blood analyzers.

Alternatively, most numerical studies about red blood cells are focused on isolated

red blood cells in simple configurations such as the simple shear flow [37, 189], red blood

cells in suspension [68, 85], red blood cells in channels [67, 69, 142, 210, 212, 215] or

in slits [77]. The study of the evolution of red blood cells in elongational flows is still

an unexplored test case, even though it has been studied with vesicles [138, 214] or

capsules [46, 51, 111].

This thesis is focused on red blood cells dynamics in such devices, as it is seen that

studies about blood analyzers only consider rigid particles or no particle at all and

that studies about red blood cells only consider simplified configurations or unrelated

geometries.
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1.5 Strategy

The problem of the dynamics of red blood cells in a blood analyzer and their influence on

the electrical measurement is tackled using a numerical method presented in chapter 2.

This method is then tested against several test cases in order to assess the quality of its

implementation.

The dynamics of red blood cells are investigated by means of analytical developments

in chapter 3: using the solid particle models of Jeffery [99], Keller & Skalak [104] and

Abkarian, Faivre & Viallat [3] adapted to an elongational flow, the main physical effects

behind the dynamics of red blood cells near the micro-orifice of the blood analyzer are

found. In chapter 4, the dynamics of red blood cells in such a configuration are studied

using 3D numerical simulations of deformable red blood cells in the blood analyzer.

This study allows the understanding of the behavior of the orientation of the red blood

cell when it travels inside the micro-orifice. This trend of orientation is modeled using

the developments of chapter 3.

Finally, the results of the simulation of the dynamics of red blood cells are used in

chapter 5 to generate the electrical pulse generated by the red blood cell traveling

through the micro-orifice. A statistical approach is used to understand the influence of

the dynamics on this measurement by means of a Monte-Carlo algorithm, thus leading

to the determination of the errors on the measurement due to the orientation, shape

and trajectory of the cell.
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This chapter presents the numerical method used to perform the simulations of

the dynamics of deformable particles, especially red blood cells. The method is based

on the Front-Tracking Immersed Boundary Method (FT-IBM), originally developed

by Peskin [148]. The whole numerical method is first presented here, as well as an

additional correction algorithm used to ensure the conversation of the particle volume.

Several test cases are presented in order to validate the implementation of the numerical

method into the YALES2BIO solver.
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2.1 YALES2 & YALES2BIO

The numerical tool used in this thesis is YALES2BIO, an unstructured solver based on

YALES2. These two numerical solvers are presented in this section.

2.1.1 YALES2

YALES2 is an unstructured solver developed at CORIA, Rouen, France (UMR CNRS

6614). It has been initially developed by Vincent Moureau in 2007. It is a finite volume

unstructured solver designed for massively parallel computations on meshes that can

reach a few billion elements [137]. It was originally created to study turbulent two-phase

combustion, but now contains more solvers, allowing the simulation of sprays, acoustic

and radiative phenomena.

2.1.2 YALES2BIO

The YALES2BIO solver is a numerical software for the simulation of blood flow [131].

It aims at helping the analysis of medical devices in contact with blood such as flow

diverters, Ventricular Assist Devices, extra corporal circulation, artificial heart and

valves, blood analyzers among others. YALES2BIO is based on YALES2 and inherits

its massively parallel capabilities and high order finite volumes schemes for complex

geometries. Both macroscale and microscale computations have been performed with

YALES2BIO, such as the flow in a whole human left heart including cardiac turbulence

in the work of Chanfa et al. [32, 33], inside an artificial heart, through an aortic valve

or the response of a red blood cell stretched within an optical tweezers (presented as

a validation test case later in this section) and the flow within an industrial blood

analyzer [132], which is the subject of this thesis.

2.2 Modelling framework

The numerical method aims at modeling the transport of deformable particles, com-

posed of an internal fluid enclosed by a flexible structure in a carrying fluid. Such a

situation notably includes capsules and red blood cells. Both fluids inside and out-

side the cell are supposed to be incompressible and Newtonian. The fluid flow is thus

governed by the continuity and the Navier-Stokes equations:

∇.~u = 0, (2.1)

ρ (
∂~u

∂t
+ ~u.∇~u) = −∇p+∇.[µ(∇~u+ (∇~u)T )], (2.2)

where ~u is the fluid velocity, p the pressure and t denotes time. µ is the dynamic

viscosity, which can be different for the internal and external fluids. Density variations

are neglected so that the density ρ is a given constant. The flexible membrane is modeled

as an infinitely thin massless structure, completely closed, that is transported by the
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fluid. In dimension d, the membrane is a structure of dimension d−1 (a surface in 3-D),

denoted by S.

Several mechanical effects can arise from the red blood cells membrane complexity: shear

resistance, bending resistance and area dilation resistance. To represent the membrane

mechanics, several approaches exist, which have been recently reviewed by Freund [77]

and presented in Section 1.4. One can cite lattice spring models [65, 66, 68, 151, 171],

multiscale mechanical approaches starting from the mechanical properties of proteins

and using homogenization to obtain large-scale models [145, 146]. Several groups rely on

continuous models, modeling the elastic part through an equivalent hyperelastic model

and completing the approach by a model accounting for bending resistance [38, 206,

207, 210, 215]. The last framework is the one adopted here.

The membrane is represented as a two-component mechanical structure, for which

the in-plane resistances (to shear and area dilation) are modeled by an equivalent hy-

perelastic model, while the bending resistance of the lipid bilayer is treated separately.

Note that the hyperelastic model accounts for the shear resistance of the cytoskeleton

and the area dilation resistance of the lipid bilayer, while the bending model only ac-

counts for the bending resistance of the lipid bilayer. Due to the value of their respective

moduli [119], the bending resistance and the area dilation resistance of the cytoskeleton

are neglected.

The hyperelastic model used to represent the membrane of the cells was specifically

developed for red blood cells by Skalak and co-workers [174]. This model is defined by

the strain energy function WSK , calculated from the in-plane principal values of strain

λ1 and λ2, thanks to the membrane shear modulus Es and area dilation modulus Ea,

expressed in N.m−1. The Skalak law reads:

WSK =
Es

4
[(λ2

1 + λ2
2 − 2)2 + 2(λ2

1 + λ2
2 − λ2

1λ
2
2 − 1)] +

Ea

4
(λ2

1λ
2
2 − 1)2. (2.3)

It can also be written with the ratio of the area dilation modulus to the shear modulus,

C =
Ea

Es
:

WSK =
Es

4
[(λ2

1 + λ2
2 − 2)2 + 2(λ2

1 + λ2
2 − λ2

1λ
2
2 − 1) + C(λ2

1λ
2
2 − 1)2]. (2.4)

This law is considered as a good model of the mechanical properties of a red blood

cell membrane. It takes into account the shear resistance through Es, representing the

cytoskeleton contribution and the area dilation resistance through Ea, which represents

the lipid bi-layer effects. In addition, its non-linear expression ensures a strain hardening

effect [174].

This model takes into account both the membrane resistance to shear and area

dilation. In addition, the bending resistance of the membrane is represented using a

bending energy function Wb, proposed by Helfrich [89]:

Wb =
Eb

2

∫

S
(2κ− c0)2dS. (2.5)
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With Eb the bending modulus, κ the mean curvature respectively and c0 the spontaneous

curvature.

The models can be combined or used separately. A membrane only modeled as a

hyperelastic shell, without bending resistance, is a good model for the thin shell of a

capsule [75, 93, 94]. The capsule shell is also often modeled using another hyperelastic

model, the Neo-Hookean model, which reads

WNH =
Es

2
(λ2

1 + λ2
2 + λ−2

1 λ−2
2 − 3), (2.6)

The Neo-Hookean model is used to model shear-softening material, while the Skalak

model is used for strain-hardening membranes [19].

Lipid vesicles can also be modeled using the laws presented earlier in this section.

One way to model vesicles is to use the Skalak model of Eq. (2.3) with Es = 0 and a

large value of Ea [205]. In this case, the membrane has no shear resistance, but strongly

resists area dilation. The Helfrich model accounts for the bending resistance.

2.3 Fluid-structure coupling with the immersed

boundary method

The present framework relies on the immersed boundary method (IBM) and the front-

tracking (FT) method. Let us first describe the coupling at the continuous level before

discretization. The membrane movement is described in a Lagrangian manner; it is

simply transported by the fluid. Adherence of the fluid over the membrane makes fluid

velocity continuous at the membrane location and equal to the membrane velocity, thus,

the membrane motion is described by:

d ~X(t)

dt
= ~U( ~X(t), t) =

∫

Ω
~u(~x, t) δ(~x− ~X(t)) d~x. (2.7)

~X denotes the membrane coordinates, ~U the membrane velocity and ~u the fluid velocity.

The IBM is a one-fluid formalism, thus the fluid domain Ω is the union of the internal

and external fluid domains. The velocity of the membrane is calculated from the fluid

velocity field, using the Dirac function δ, ensuring the continuity of velocities at the

interface. The effect of the particle deformation on the fluid motion is twofold:

• Fluid properties are variable in space (e.g. viscosity may differ inside and outside

the membrane, whose position varies over time)

• As a reaction against its deformation, the membrane exerts a force ~f on the fluid.

Thus, the fluid momentum conservation equation reads:

ρ (
∂~u

∂t
+ ~u.∇~u) = −∇p+∇.[µ(∇~u+ (∇~u)T )] + ~f. (2.8)
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The force per unit volume ~f is obtained from the membrane forces per unit surface ~F ,

through:

~f(~x, t) =

∫

S

~F ( ~X(t), t) δ(~x− ~X(t)) dS. (2.9)

The addition of this source term to the fluid momentum equation ensures the right

stress discontinuity across the membrane.

2.4 Discretization of the coupled problem

Figure 2.1: Schematic representation of the discretized problem in 2D.

The membrane is discretized using a set of M Lagrangian markers (Fig. 2.1). The

discrete unknowns are the coordinates of each marker m :
−−→
Xm = (Xm, Ym, Zm)t. The

fluid domain Ω is discretized with N grid vertices located at −→xn = (xn, yn, zn)t.

The markers transport equation, Eq. (2.7) is advanced using an explicit Euler

scheme. The discretization of the fluid equations over unstructured grids makes the

transport equation for the membrane markers involve discrete Dirac functions wm, to

interpolate the fluid velocity at the markers location from the fluid velocity at the

neighboring grid vertices, located at −→xn = (xn, yn, zn)t:

−→
Um(t) =

N
∑

n=1

−→un(−→xn, t)wm(
||−→xn −

−−→
Xm(t)||
h

)dVn, (2.10)

dVn is the volume of the element associated with the fluid grid node n. The definition

of the discrete Dirac function wm is the object of section 2.5.

The force per unit volume applied on the fluid by the membrane is computed from

the discrete forces per unit surface on the membrane markers, through the process of

force regularization, which also involves wm:

−→
fn(t) =

M
∑

m=1

−→
Fm(
−−→
Xm(t), t)wm(

||−→xn −
−−→
Xm(t)||
h

)dSm. (2.11)
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dSm is the surface element associated with marker m.
−→
Fm is the discrete force per unit

surface applied by the membrane on the fluid grid around marker m.
−→
fn is the force per

unit volume at grid vertex n.

In two dimension, the membrane is discretized as a set of markers connected by edges

as shown in Fig 2.1. In 3 dimension, the membrane surface is triangulated as presented

on Fig. 2.2.

Figure 2.2: Triangulated red blood cell membrane.

2.4.1 Hyperelastic forces

To compute the elastic membrane forces, the method introduced by Charrier et al. [29]

is used. It is a simple first-order finite element method. In order to present the whole

algorithm, the method is presented for a flat membrane, deformed only in its plane. The

presentation can thus be made in 2D. This method is easily extended to a 3-dimensional

membrane by means of solid body transformations on the deformed elements, as will be

explained at the end of the section. The method was already fully described by Charrier

et al. [29], but it is detailed here for the sake of completeness and clarity.

x, X
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k(x  , y  )k ku
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Figure 2.3: Schematic of a membrane element deformation.
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In this section, we will use the following notations: a flat membrane is deformed

in its plane. A membrane marker is described by its reference coordinates x and y, in

the undeformed configuration and the current coordinates X and Y after deformation.

The notation from Charrieret al. [29] is used, column vectors are denoted by { }. The

displacements are noted u and v in the x and y directions, respectively (see Fig. 2.3).

1. The relation between the deformed and undeformed coordinates can be written

as:

X = x+ u, (2.12)

Y = y + v. (2.13)

2. The membrane being modeled with a 2-dimensional hyperelastic law W , function

of λ1 and λ2 the principal values of strain, one can find the force exerted by the

elements with:

a) The first order development of this function, which reads:

δW = {δu}T
[

∂W

∂λ1

{

∂λ1

∂u

}

+
∂W

∂λ2

{

∂λ2

∂u

}]

+ {δv}T
[

∂W

∂λ1

{

∂λ1

∂v

}

+
∂W

∂λ2

{

∂λ2

∂v

}]

, (2.14)

b) and the principle of virtual work:

δWe = {δu}T {Fx}+ {δv}T {Fy}, (2.15)

The element is assumed to undergo homogeneous deformation, thus:

δWe = VeδW, (2.16)

with Ve the original volume of the element. Hence, one has:

{Fx} = Ve
∂W

∂λ1

{

∂λ1

∂u

}

+ Ve
∂W

∂λ2

{

∂λ2

∂u

}

, (2.17)

{Fy} = Ve
∂W

∂λ1

{

∂λ1

∂v

}

+ Ve
∂W

∂λ2

{

∂λ2

∂v

}

, (2.18)

with Ve the original volume of the element.

3. In order to compute Eqs. (2.17) and (2.18), an expression for the principal values

of stretch λ1 and λ2 is needed. Their value is computed for each triangle of vertices

i, j, k. It is possible to find an explicit relation between the principal values of

strain and the displacements using a linearity hypothesis on the displacements

{u} and {v} in the triangle:

{u} = Niui +Njuj +Nkuk = {uT }{N}, (2.19)
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{v} = Nivi +Njvj +Nkvk = {vT }{N}, (2.20)

with Ni, Nj and Nk being shape functions such that Ni = 1 on marker i and

Ni = 0 on markers j and k, Nj and Nk being defined by cyclic changes of indices.

To relate the coordinates of the undeformed (x, y) and deformed (X,Y ) elements

markers, one writes:

{dX} = [F ]{dx}, (2.21)

with [F ] the transformation gradient which reads,

[F ] =

{

∂X

∂x

}

= [I] +

{

∂u

∂x

}

. (2.22)

4. The right Cauchy-Green deformation tensor, [G] = [F ]T [F ], can then be computed

and principal values of strain λ1 and λ2 are related to the eigenvalues of [G], so

that:

[G] = [F ]T [F ]. (2.23)

λ2
1 =

1

2
[G11 +G22 +

√

(G11 −G22)2 + 4G2
12], (2.24)

λ2
2 =

1

2
[G11 +G22 −

√

(G11 −G22)2 + 4G2
12]. (2.25)

G11, G22 and G12 have explicit expressions as a function of the displacements and

the shape functions used in the linearity hypothesis (see Charrier et al. [29] for

details).

5. Once λ1 and λ2 are computed, it is possible to use Eqs. (2.17) and (2.18) and

compute the contribution of one neighbouring element on the marker. In order to

obtain the resulting force on a marker, the procedure has to be repeated for each

neighbouring element and summed on the considered marker.

The method is easily extended to general 3-dimensional membranes as the calcula-

tions are made element by element. Thus, to compute the hyperelastic forces for a

3-dimensional membrane, solid body transformations are performed on the deformed

elements, in order to put both the undeformed and deformed elements in the same

plane. Since solid body transformations do not change the stretching of the elements,

the problem remains the same.

2.4.2 Curvature forces

When the curvature energy of the membrane is described by the Helfrich equation of

formula 2.5, the curvature force on the membrane, as found by Zhong-can et al. [218]

can be written as:

~Fb = −Eb[(2κ− c0)(2κ2 − 2κg + κc0) + 2∆sκ]~n. (2.26)
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With Eb the bending modulus, κ and κg the mean and Gaussian curvatures, c0 the

spontaneous curvature and ∆s the Laplace-Beltrami operator, which is a surface Lapla-

cian operator.

The method described in Farutin et al. [62] is used to compute κ, κg and ∆sκ from the

coordinates of the membrane markers. A local coordinate system associated to each

marker is introduced. It is composed of the approximate normal to the surface ~nO for

node a, the average of the neighboring faces normals, and two unit vectors ~ξO and ~ηO

orthogonal to ~nO and to each other. The origin of this local coordinate system is node

O. In this coordinates system, a neighbor of node O, located at ~X, has the following

tangential coordinates:

sξ = ( ~X − ~XO). ~ξO, sη = ( ~X − ~XO). ~ηO. (2.27)

The surface is then locally characterized as a function of the tangential coordinates sξ

and sη. In order to obtain the curvatures, a quadratic approximation of the global

coordinates around node O is made (Xi, i = 1, 2, 3 denote the coordinates in the global

system):

Xi(sξ, sη) = XO
i + (∂ξXi)

Osξ + (∂ηXi)
Osη

+
1

2
[(∂ξξXi)

Os2
ξ + (∂ηηXi)

Os2
η + 2(∂ξηXi)

Osξsη]. (2.28)

The five unknown coefficients of Eq. (2.28) are computed using least squares fitting of

the approximation by comparison with the actual coordinates of the markers around

marker O (see details at the end of the subsection). The mean and Gaussian curvatures

at node O are then defined as:

κO =
1

2
Tr[cO(gO)−1], κO

g = det[cO(gO)−1], (2.29)

with,

gO
αβ = (∂αXi)

O (∂βXi)
O, cO

αβ = nO
i (∂αβXi)

O, (2.30)

(α, β ∈ {ξ, η}, i = 1, 2, 3).

gO
αβ and cO

αβ are the metric and curvature tensors, respectively. Once κ is calculated for

each marker, the same procedure is applied to calculate ∆sκ. The mean curvature is

approximated using a quadratic approximation:

κ(sξ, sη) = κO + (∂ξκ)Osξ + (∂ηκ)Osη

+
1

2
[(∂ξξκ)Os2

ξ + (∂ηηκ)Os2
η + 2(∂ξηκ)Osξsη]. (2.31)

The Laplace-Beltrami operator then writes:

∆sκ =
1

√

|detg|
∂α(

√

|detg|g−1
αβ∂βκ), (2.32)
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which also reads:

∆sκO = (∂αβκ)O(gO)−1
αβ − [(gO)−1

αβ(∂αβXi)
O][(gO)−1

γδ (∂γκ)O(∂δXi)
O]. (2.33)

The fitting procedure consists in finding a paraboloid surface patch approximating the

membrane locally, around each node. It is based on the procedure described in Garimella

et al. [82]. A quadric patch f = f(sη, sξ) defined as,

1

2
as2

η + bsηsξ +
1

2
cs2

ξ + dsη + esξ = f − fO, (2.34)

is searched to fit the membrane around the node. In the case of Eq. (2.28) for instance,

a, b, c, d and e correspond to (∂ααXi)
O, (∂αβXi)

O, (∂ββXi)
O, (∂αXi)

O, (∂βXi)
O, re-

spectively. To find the values of the coefficients best fitting the variables of interest,

Eq. (2.34) is written for a set of m markers neighboring O. The equations can be

gathered in a unique system of the form S~a = ~f
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. (2.35)

This system is over-constrained as soon as more than five neighbours of O are used.

To find the values of the coefficients (gathered in vector ~a) that provide the best fit,

a least-square fitting approach is used. The least-square problem can be written as a

linear system to solve [59]: ~a is then obtained explicitly, provided that the inverse of

(ST S) is calculated: ~a = (ST S)−1ST f. For each node, this fitting procedure is applied

four times for each marker: for each of the three global coordinates and for the mean

curvature.

2.4.3 Resolution

The incompressible Navier-Stokes equations are solved using a projection method [34].

The fluid velocity is first advanced using a 4th-order central scheme in space, and a

4th-order Runge-Kutta like scheme in time [32]. In YALES2BIO, the forces exerted by

the membrane on the fluid are included in the prediction step. Divergence-free velocity

is obtained at the end of the time-step by solving a Poisson equation for pressure, to

correct the predicted velocity. A Deflated Preconditioned Conjugate Gradient algorithm

is used to solve this Poisson equation [128]. The correction step is not modified by the

IBM. The fluid velocity at the end of each time step is interpolated to the markers, to

convect the membrane.
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2.5 Interpolation and regularization over unstructured

meshes

In the original IBM formulation, as in a majority of studies using IBM, finite differences

are used to solve the fluid equations, using a regular Cartesian grid of constant grid size

h. In this case, the discrete Dirac function wm involved in the velocity interpolation

(Eq. (2.10)) and force regularization (Eq. (2.11)) can be easily defined. wm is taken as

a product of one-dimensional delta functions:

wm(
||−→x n −

−→
Xm||

h
) = D(

xn −Xm

h
)D(

yn − Ym

h
)D(

zn − Zm

h
). (2.36)

The cosine representation is often used in each direction:

D(r) =



















1

4h

[

1 + cos

(

πr

2

)]

if |r| < 2

0 if |r| ≥ 2

(2.37)

The volume of the grid cells is also defined in terms of grid size: dVn = h3. Note that

more sophisticated delta functions were also proposed: see for example the discussions

by Roma et al. [164] and Peskin [148] about the discrete Dirac functions and their prop-

erties. Eventually, note that over regular Cartesian grids, the discrete Dirac functions

can be defined independently of the position of the markers.

Over unstructured grids, Cartesian versions of wm cannot be used. This issue was

dealt with in the context of finite element by Liu and coworkers [202] and their ideas

were adapted later to the finite difference/finite volume context by Pinelli et al. [150].

Adaptation of the immersed boundary formalism to unstructured meshes relies on the

Reproducing Kernel Particle Method (RKPM) [120]. The principle of the interpolation

and regularization procedure with the Reproducing Kernel Particle Method of second

order (RKPM2) is briefly explained in 1D before detailing the implementation in the

3D case. The effect of the RKPM and its order will be studied in section 2.8.4.

Let us consider the regularization problem: at one marker located at ~X, a force is

known and has to be regularized over the fluid grid. For a fluid grid vertex of coor-

dinate ~x, one has to determine the regularization weight, the value of the regularized

discrete Delta function (also called window function here).

Starting with an initial window function φ ~X as the cosine one (Eq. (2.37)), one can

introduce the following modified window function φ ~X :

φ ~X(
~x− ~X

h
) = φ ~X(

~x− ~X

h
)

K
∑

k=0

βk( ~X)(
~x− ~X

h
)k. (2.38)

~X would be the marker coordinate and ~x the coordinate of the grid vertex where the

weight φ ~X is to be calculated. βk are the coefficients of the polynomial correction of
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the original window function. They are calculated by imposing conditions on the first

moments of φ ~X . The p-th moment of the function φ ~X and φ ~X is defined as:

mp( ~X) =

∫

Ω
(
~x− ~X

h
)p φ ~X(

~x− ~X

h
) dx,

mp( ~X) =

∫

Ω
(
~x− ~X

h
)p φ ~X(

~x− ~X

h
) dx. (2.39)

By plugging the definition of φ into Eq. (2.39), one easily obtains that:

mp( ~X) =
n
∑

k=0

βk( ~X)m(k+p)( ~X), (2.40)

with m(k+p)( ~X) the (k + p)th moment of φ at the location of the marker, ~X. For a

unit point force applied at coordinate ~X, moments calculated at ~X are known: the first

moment is 1 and the following ones are all 0. These conditions, which are naturally

true for the force to regularize, are imposed on the regularized force. Verification of the

moments conditions ensures the quality of the regularization process. In 1D, imposing

that m0( ~X) = 1 and mp( ~X) = 0 for 1 ≤ p ≤ P , one can determine the corresponding

βk for 0 ≤ k ≤ P , by inverting the (P + 1) × (P + 1) symmetric matrix [150]. When

discrete Dirac functions are used for regularization of a marker force, having m0( ~X) = 1

and m1( ~X) = 0 guarantees that the regularized force has the same intensity and the

same application point as the marker force.

marker m

node j

dVj

4h

y

x

Figure 2.4: Schematic representation of the procedure to compute the window function
for regularization and interpolation over unstructured grids.

Extension to three dimensions is shown in Pinelli et al. [150]. In practice, the

following algorithm is used to calculate the weights of the window function associated
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with each marker. The a priori window function is:

w( ~Xm, ~xj)

= w( ~Xm,
~xj − ~Xm

h
)[(β0)m + (β1)m

xj −Xm

h
+ (β2)m

yj − Ym

h
+ (β3)m

zj − Zm

h

+ (β4)m

(

xj −Xm

h

)(

yj − Ym

h

)

+ (β5)m

(

yj − Ym

h

)(

zj − Zm

h

)

+ (β6)m

(

zj − Zm

h

)(

xj −Xm

h

)

+ (β7)m

(

xj −Xm

h

)2

+ (β8)m

(

yj − Ym

h

)2

+ (β9)m

(

zj − Zm

h

)2

]. (2.41)

For one marker m, the algorithm is:

1. A local grid size h is defined. Its value is unique, typical of the fluid grid size at

the particle location. Different values for each marker could be used but have not

been tested.

2. For all the J fluid nodes located in the sphere of diameter 4×h centered on marker

m, the intermediate window function weights are calculated (j = 1, ..., J):

w( ~Xm,
~xj − ~Xm

h
) =

1

2d−1
D

(

||−→Xm −−→x j ||
h

)

(2.42)

3. Moments of the intermediate window function are calculated as:

mp,q,r( ~Xm) =
J
∑

j=1

(

xj −Xm

h

)p (yj − Ym

h

)q (zj − Zm

h

)r

w( ~Xm,
~xj − ~Xm

h
)dVj ,

(2.43)

where dVj is the volume of the element associated with vertex j.

4. Coefficients of the modified window function are calculated: for the modified

window function to be a good regularization of a point force, the values of mo-

ments of order 0, 1 and 2 can be imposed: m0,0,0 = 1 while the others mo-

ments are set to 0. This necessitates, for each marker, the use of 10 coefficients

(βk)m, (0 ≤ k ≤ 9 in 3D).

Using Eq. (2.41), one can obtain the equivalent of Eq. (2.40) to relate the (βk)m
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coefficients to the imposed moments:
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(2.44)

In order to calculate the (βk)m coefficients, the 3-D moments matrix M3D is

built (the dependence of moments on ~Xm is omitted) from the moments of the

intermediate window function calculated using Eq. (2.43). M3D is then inverted

for each marker. The coefficients (βk)m are then calculated using:
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. (2.45)

5. The weights of the modified window function can thus be calculated using Eq. (2.41).

These weights are used to regularize the membrane forces on the fluid grids as

well as for the interpolation of the fluid velocity to the membrane markers, using:

~fn(~xn, t) =
M
∑

m=1

~Fm( ~Xm(t), t)dSmw( ~Xm,
~xn − ~Xm

h
), (2.46)

~Um( ~Xm, t) =
N
∑

n=1

~un(~xn, t)w( ~Xm,
~xn − ~Xm

h
)dVn. (2.47)

Note that the window function w depends both on the fluid grid and on the mark-

ers.

To avoid computing the weights twice per iteration (regularization and interpola-

tion, their size being N ×M), (βk)m (data of size 10 ×M) are stored after the

regularization step of Eq. (2.46) to be used for the interpolation step Eq. (2.47).
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Note that this algorithm has been modified by Pinelli et al. to avoid ill-conditioned

M3D matrices. Such an issue has not been encountered in the present study, presumably

because of the larger stencil used here.

The discrete Dirac function is also used to update the viscosity field. As in the front-

tracking method presented by Unverdi and Tryggvason [190], an indicator function

In = I(~xn, t) is calculated to determine if ~xn is located inside (In = 0) or outside

(In = 1) the particle. The dynamic viscosity thus reads:

µ( ~xn, t) = µint + (µext − µint)In, (2.48)

with µint the internal viscosity and µext the viscosity outside the particle. I(~xn, t) is

determined as the solution of a Poisson equation:

∆I = ∇. ~G, with ~G( ~xn) =
M
∑

m=1

~nmdSmw( ~Xm,
~xn − ~Xm

h
). (2.49)

~G, the right hand side of the Poisson equation, can be seen as the regularization field of

the membrane unit normal vectors (~nm,m = 1, ...,M). This technique ensures that the

viscosity has the right value inside and outside the particle, with a smooth transition

in the membrane region, where the forces are applied.

2.6 Particle volume conservation

The IBM does not intrinsically conserve the volume enclosed by the flexible membrane as

the interpolation process does not conserve the divergence-free character of the carrying

fluid flow. A Lagrange Multiplier method is used to find the smallest correction to the

markers location ensuring the conservation of the particle volume. In three dimensions,

the cell membrane is a mesh of F triangular elements. Each face f has three nodes i, j

and k. The volume enclosed in the membrane can be calculated as:

V (~x) =
1

6

F
∑

f=1

[
−→
xf

i .(
−→
xf

j ×
−→
xf

k)−
−→
xf

j .(
−→
xf

k ×
−→
xf

i ) +
−→
xf

k .(
−→
xf

i ×
−→
xf

j )]. (2.50)

At the beginning of the computation, the initial volume of the particle V0 is computed.

At the end of each time step, the current volume of the particle is also computed. Due to

the numerical integration, they can be different. In order to obtain a particle of volume

V0, we search the smallest markers displacements ~δx which ensure that V (~x+ ~δx) = V0.

Introducing a Lagrange multiplier Λ, the sought correction displacements ~δx minimize

the following cost function:

JΛ( ~δx) =
M
∑

m=1

((δxm)2 + (δym)2 + (δzm)2) + Λ(V (~x+ ~δx)− V0). (2.51)

Partial derivatives of JΛ are calculated against δxm, δym and δzm. As these derivatives

are zero at the minimum, one finds:

δxm = − Λ

12
[−→αm]x ; δym = − Λ

12
[−→αm]y ; δzm = − Λ

12
[−→αm]z, (2.52)
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with −→αi defined for marker i as:

−→α i =
F
∑

f=1

(−→x f
j ×−→x

f
k). (2.53)

When JΛ is minimum, ∂JΛ
∂Λ = 0, which means that the current volume is equal to the

initial volume. Using Eq. (2.50) and Eqs. (2.52), the following third-order polynomial

equation in Λ is obtained: AΛ3 +BΛ2 + CΛ +D = 0, with:

A =
1

123

M
∑

m=1

[
−→
αm

i .(
−→
αm

j ×
−→
αm

k )−−→αm
j .(
−→
αm

k ×
−→
αm

i ) +
−→
αm

k .(
−→
αm

i ×
−→
αm

j )], (2.54)

B =
1

122

M
∑

m=1

[(
−→
xm

i +
−→
xm

j +
−→
xm

k ).
−→
V m

aa + (
−→
αm

i +
−→
αm

j +
−→
αm

k ).(
−→
V m

ax +
−→
V m

xa)], (2.55)

C =
1

12

M
∑

m=1

[(
−→
αm

i +
−→
αm

j +
−→
αm

k ).
−→
V m

aa + (
−→
xm

i +
−→
xm

j +
−→
xm

k ).(
−→
V m

xa +
−→
V m

ax)], (2.56)

D = V (~x)− V0. (2.57)

With, −→
V m

aa = (
−→
αm

k −
−→
αm

j )× (
−→
αm

i −
−→
αm

j ),

−→
V m

xx = (
−→
xm

k −
−→
xm

j )× (
−→
xm

i −
−→
xm

j ),

−→
V m

ax = (
−→
αm

k −
−→
αm

j )× (
−→
xm

i −
−→
xm

j ),

−→
V m

xa = (
−→
xm

k −
−→
xm

j )× (
−→
αm

i −
−→
αm

j ).

This third-order polynomial equation is then solved using Cardano’s method. Once Λ

is found, the membrane markers positions are updated to ensure volume conservation,

as follows:
−→xm = −→xm −

Λ

12
−→αm. (2.58)

2.7 YALES2BIO timestep description

In this section, a regular timestep of YALES2BIO is detailed. Considering an initial

configuration of a red blood cell inside a fluid domain, it goes:

1. The viscosity field is calculated by computing the indicator function (see sec-

tion 2.5).

2. Hyperelastic and bending forces are computed on each marker of the membrane

(see section 2.4).

3. These forces are regularized over the fluid grid (see section 2.5).
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4. The Navier-Stokes equations are explicitly advanced using the regularized forces

as a source term using Chorin’s projection method (see section 2.4).

5. The new velocity field is interpolated on the membrane markers (see section 2.5).

6. The membrane markers are convected using an Euler time-advancement scheme

(see section 2.3).

7. The markers position is corrected by the volume conservation algorithm (see sec-

tion 2.6).

2.8 Validation test cases

The two dimension validation of the implementation of the presented numerical method

has been presented in a previous publication, Mendez et al. [132]. It shows multiple test

cases that prove the quality of the numerical results, the coupling and the algorithm

in two dimension. In this section, the accuracy of the three dimension extension of the

method and of the three dimension membrane mechanics are tested. First, a few static

test cases are presented: pressurized capsules, equilibrium shapes of vesicles and red

blood cells and a red blood cell undergoing the optical tweezers test case. Finally, an

extensive test case of the dynamics is presented with spherical capsules in linear shear

flow.

2.8.1 Pressurized capsules

The pressurization test case is often performed in the literature [201]. A spherical

capsule is placed in a cubic fluid domain of side length 2L and is inflated from a radius

a to radius ap = (1 + α)a by an internal pressure, the surrounding fluid is at rest (see

Fig. 2.5). The capsule undergoes an isotropic tension associated to the stretch ratio

λ = 1 + α. One can analytically relate the tension and stretch ratio [201]. In the case

of the Neo-Hookean law, this relation reads:

T = Es(1− 1

λ6
), (2.59)

and in the case of the Skalak law,

T = Es(λ2 − 1 + Cλ2(λ4 − 1)). (2.60)

The isotropic tension of the membrane is directly related to the pressure difference

across the membrane using Laplace’s law:

p =
2T

ap
=

2T

(1 + α)a
. (2.61)

Simulations are performed with a capsule which surface mesh contains 4580 elements

and a cubic fluid grid of side 2L = 4a with solid walls and a uniform mesh size of

dx =
ap

12.5 . Without changing ap, different values of α are used according to table 2.1.
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aap
2L

x

y

z

Figure 2.5: Schematic representation of the pressurization test case.

Simulations parameters
ap

dx Es (N.m−1) C ap
L
ap

α

12.5 1.0 1.0 0.5 2 0−0.5

Table 2.1: Summary of the simulations parameters for the pressurized capsule test case.

The comparison is done with the non-dimensional pressure ap
Es

, with p the pressure

difference between the inner and outer fluids. Using Eq. (2.59), Eq. (2.60) and Eq. (2.61),

the analytical non-dimensional pressure difference is computed and compared with the

numerical results on Fig. 2.6.

A good agreement is found between the results computed with YALES2BIO and

the analytical ones, the maximum error is found to be less than 0.5%.
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Figure 2.6: Non-dimensional pressure difference across the membrane for different values
of the inflation factor α in the cases of the Skalak law (dashed) and the Neo-Hookean
law (solid).

2.8.2 Equilibrium shapes

Equilibrium shapes of vesicles

Equilibrium shapes of vesicles are computed. Vesicle dynamics are governed by bending

forces as well as a surface incompressibility constraint, which implies that the vesicle

with an initial ellipsoidal shape will deflate to a discocyte shape. Thus, the Skalak

hyperelastic model is used with a shear modulus Es = 0 (providing no shear resistance),

and high area dilatation modulus Ea (giving the surface incompressibility constraint).

The computed equilibrium shapes are compared with semi-analytical results ex-

tracted in Boedec et al. [26]. The equilibrium shapes should depend only on the

reduced volume v, defined as:

v =
V

4
3π (A/4π)3/2

, (2.62)

where V , A are the volume and area of the vesicle. Starting from prolate initial shapes

of large radius a, the vesicles gradually deform to reach their equilibrium shapes. The

time needed for the vesicle to reach the equilibrium shape depends on its size, the

membrane moduli and the viscosity of the fluid. However, only the equilibrium shape,

which depends on v, is compared with the reference data.

The vesicles are meshed with 5028 and 7930 elements for v = 0.783 and v = 0.902,

respectively. The fluid domain is a cube of size 2L = 2.4a, closed by solid calls, in

which a uniform grid of size dx = a
12.5 is used. Figures 2.7 and 2.8 show comparisons

of the computed equilibrium shapes with semi-analytical results. The shapes are found
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to be in excellent agreement.

x/a

y
/a

Figure 2.7: Comparison of the final shape from YALES2BIO calculation with the semi-
analytical shape for v = 0.783.

x/a

y
/a

Figure 2.8: Comparison of the final shape from YALES2BIO calculation with the semi-
analytical shape for v = 0.902.
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Equilibrium shapes of red blood cells

The reference shape of the cytoskeleton of red blood cells is not known and is still de-

bated [38, 55, 73, 119, 147]. Although the regular discocyte shape of the red blood cell

could be the obvious choice, one of the candidate for the resting shape of red blood

cells is an ellipsoid with a reduced volume close to 1.0, implying pre-stress in the red

blood cells (Fig. 2.9). This reference shape has notably allowed to reproduce the well-

known Stomatocyte-Discocyte-Echinocyte (SDE) sequence using shape optimization al-

gorithms. The SDE sequence cannot be reproduced with the discocyte as a reference

shape. In addition, using a spheroidal stress free shape has enabled recent simulations

to obtain results in shear flow much closer to experimental data [38, 147, 189].

The test case consists in showing that the red blood cell shape can be obtained by

deflating an ellipsoid and letting it evolve to a stable state [106, 118, 119]. In this test

case, an initially ellipsoidal red blood cell is suspended into a resting fluid. Its reference

shape is imposed to be an ellipsoid with a reduced volume of 0.95 and an area equal to

the one of a red blood cell, ARBC = 133.4 µm2. At the beginning of the calculation, the

volume of the capsule is instantaneously imposed to be Vref = VRBC = 93.5 µm3. This

corresponds to a violent deflation of the capsule. The initial volume is thus smaller than

the reference one. The capsule progressively relaxes to recover its reference volume, but

at a fixed area.

Figure 2.9: Initial and final shape of the red blood cell.

It deforms into a discocyte in order to minimize the energy associated to the elastic

and bending forces (Fig. 2.9). In this test case, the red blood cell is modelled using the

Skalak law, with Es = 3.6× 10−6 N.m−1, C = 100 and Eb = 2× 10−19 N.m.

A parametric expression of the discocyte shape of red blood cells has been calculated

from experimental measurement by Evans and Fung [61]. It reads:

Z = ±0.5R0

[

1− X2 + Y 2

R2
0

]
1
2



C0 + C1
X2 + Y 2

R2
0

+ C2

(

X2 + Y 2

R2
0

)2


 , (2.63)
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with

R0 = 3.91 µm, C0 = 0.207161, C1 = 2.002558 and C2 = −1.122762. (2.64)

The profile of the red blood cell membrane obtained in YALES2BIO is compared to

the parametric profile from Evans and Fung [61] on Fig. 2.10. In order to quantify the

mesh refinement, a characteristic length is introduced:

RRBC =

(

3VRBC

4π

)1/3

, (2.65)

With VRBC the volume of the red blood cell. The fluid mesh used is a Cartesian mesh

with RRBC

dx = 13, the membrane is meshed with 5120 surface elements.

Figure 2.10: Comparison of the parametric profile of a red blood cell and the numerical
profile obtained.

A good agreement is found between the two profiles. A shape very close to the

parametric shape of Evans and Fung [61] can thus be recovered by minimizing the

membrane energy (elastic and curvature energy) with an ellipsoidal reference shape for

the cytoskeleton. As shown by Cordasco et al. [38] and Peng et al. [147], one can

also impose a non-zero spontaneous curvature to obtain an even better match with the

parametric shape.

2.8.3 Optical tweezers

The optical tweezers test case is an experimental setup where a red blood cell is

stretched. Two silica microbeads, each 4.12 µm in diameter, are attached to the cell at

diametrically opposite points.
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Laser beam

←
←
←
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Figure 2.11: Schematic representation of the optical tweezers test case.

The left bead is anchored to the surface of the glass slide, and the right bead is

trapped by a laser beam. As the trapped bead remains stationary, moving the slide

and the attached left bead stretches the cell until the trapped bead escapes the laser,

as the force exerted by the cell on the bead is higher than the one exerted by the laser.

The cell is stretched at different laser power to record cell deformation over a range of

forces. For each stretch test, the axial diameter (in the direction of stretch), and the

transverse diameter (orthogonal to stretch direction) of the cell are measured when the

trapped bead just escapes the trap.

Such an experimental device is used to produce strain-stress curves for the whole

cell to characterize membrane mechanics in healthy and pathological cases [43, 90, 114,

134, 183].

Computational domain

For the cell geometry, Eqs. (2.63) and (2.64) are used. The fluid geometry is a par-

allelepipedic domain centered on the cell. Assuming that x is the direction of the

stretching and y the axis of revolution of the red blood cell, the dimensions of the par-

allelepiped in x, y, and z directions are respectively Lx, Ly and Lz. The red blood cell

surface is meshed with 3310 triangular faces and the fluid grid is discretized such as

Lx = 6RRBC , Ly = 2RRBC and Lz = 4RRBC .

Boundary conditions

Specific conditions have to be defined on the cell membrane in order to stretch it.

The assumption made is that the contact area between the beads and the cell can be

considered as the intersection between the cell surface, and a plane perpendicular to

the direction of stretch. The plane location is chosen such as the contact area length is

equal to 2 µm in the z direction (shown on Fig. 2.12). To stretch the cell, the chosen

method consists in applying an external force on the edge nodes of the contact area.
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Figure 2.12: Contact area between the beads and the red blood cell.

This method has been designed by J. Sigüenza [172, 173] and has shown to eliminate

the problem of applying a constant stress on the zone of the cell in contact with the bead.

Such a technique generates unphysical pointwise oscillations, as previously shown [62,

107].

Numerical results

The red blood cell is modeled with the Skalak law:

Simulations parameters
R0
dx Es (N.m−1) C Eb Law
12.5 2.5−5.7×10−6 1.0 0.0 Skalak

Table 2.2: Summary of the simulations parameters for the optical tweezers test case.

Transverse and axial diameters are measured and compared to experimental results

from Mills et al. [134] over a defined range of stretching force values.
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Figure 2.13: Axial (top) and transverse (bottom) diameters of the red blood cell for
different applied forces in the optical tweezers test case and different shear modulii Es

compared to the experimental results of Millset al. [134].

A good agreement is found between the experimental results from Mills et al. [134]

and those produced by YALES2BIO.

2.8.4 Spherical capsules in linear shear show

In this test case, which setup is represented in figure 2.14, an initially spherical capsule

of radius a is freely suspended in a linear shear flow, defined by ~u = (ky, 0, 0), with k

the shear rate. The membrane is an infinitely thin hyperelastic structure.



48 CHAPTER 2. NUMERICAL METHOD

x

y

z

Figure 2.14: Schematic representation of the test case setup.

In this prescribed flow, the capsule deforms in the shear plane (in this case, xOy)

during an initial transient phase.

Figure 2.15: Successive states of a capsule during the transient phase.

t0 t1 > t0 t2 > t1 t3 > t2 t4 > t3

Figure 2.16: Schematic representation of the tank-treading motion. Successive positions
of a specific marker (black square) on the capsule membrane along a run.

After this transient phase (Fig. 2.15 and 2.17), it stabilizes at a steady orientation

and shape and starts a tank-treading motion (Fig. 2.16 and 2.17). This configuration
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is very important in the context of computation of deformable particles under flow. It

has been extensively studied in the zero Reynolds limit [17, 18, 20, 75, 111, 162] and

now continues to serve as a validation case for numerical methods [49, 117, 124].

kt kt

D θ

Figure 2.17: Typical evolution of the deformation parameter D and orientation θ of a
capsule versus time in simple shear flow.

In addition to the tank-treading movement, Lac et al. [111] have shown another

interesting feature: under some conditions, the membrane is subjected to compressive

stress and buckles. This buckling may lead to instabilities in some numerical methods.

The modeling of finite-thickness membrane capsules (Dupont et al. [58]) shows that

the global capsule shape is quasi-identical whether the thickness of the membrane is

modeled or not. The membrane thickness essentially impacts the appearance and the

characteristics of wrinkles present in the buckling situation. To define a particular test

case, one needs to introduce these several parameters:

• The viscosity ratio λ:

λ =
µint

µext
. (2.66)

• The Reynolds number, in Eq. (2.67), is defined with the capsule radius a, the

shear rate k associated to the prescribed flow and the external dynamic viscosity

µext. It compares inertial effects to viscous effects at the scale of the capsule:

Re =
ρka2

µext
. (2.67)

In all the test cases performed in this study, the Reynolds number is considered

low, as in the literature.

• The capillary number is also introduced, as in Eq. (2.68) with Es, the shear

modulus of the capsule membrane. It compares viscous forces to the membrane’s
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elastic forces:

Ca =
µextka

Es
. (2.68)

• In the case of a membrane with its mechanics defined with Skalak law, an impor-

tant parameter is C, it is the ratio of the area dilation modulus Ea and the shear

modulus Es:

C =
Ea

Es
. (2.69)

Numerical configuration and parameters

In numerous studies from the literature, the numerical domain is infinite, which ensures

the absence of boundary effects on the dynamics of the capsule. In our numerical

framework the domain is finite and meshed, thus the larger this domain, the less these

effects affect the results, while increasing computational cost. The domain size ratio is

defined as:
L

a
, (2.70)

with the cubic domain having a size of 2L. The mesh size ratio, defining the number

of fluid mesh nodes on a characteristic length, is defined as (with a the radius of the

capsule and dx the fluid mesh size):
a

dx
. (2.71)

All the results will be displayed in terms of a deformation parameter D and orientation

of the capsule. D defined as:

D =
A−B
A+B

, (2.72)

where A and B are the small and large axes of the ellipsoid that has the same matrix

of moments of inertia as the one computed for the deformed capsule. Its asymptotic

value, reached when the simulation has converged (i.e, when the shape is stabilized)

will be particularly studied. In cases were buckling occurs, notably for small Ca [18],

our simulations are unstable in the long run. Values are extracted from the simulation

after the stabilization and before the instability, typically for kt ∼ 10. The orientation

of the membrane is defined as the angle between the direction of the flow and the large

axis of the membrane’s inertia ellipsoid in the shear plane.

Domain size convergence

In this section, the effect of the domain size on the results is investigated. The initially

spherical capsule is modelled with the Neo-Hookean Law. It is suspended in a domain

for which the size is varied. The capsule deformation and orientation after stabilization

are then reported. The variation of the value for the deformation or orientation of the

capsule is represented by the following quantity:

var(x) =
xcurrent − xmax

xmax
× 100. (2.73)
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Simulations parameters
a

dx Ca λ L
a Law

6.25 0.075 1 4− 20 Neo-Hookean

Table 2.3: Summary of the red blood cell parameters for the domain size convergence.

With xmax being value of x in the extreme case (i.e L
a = 20 or a

dx = 25).

Figure 2.18 and 2.19 present var(D) and var(θ) versus the domain size ratio. These
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D
)
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)

L
a

Figure 2.18: Percentage of relative variation of the deformation versus domain size ratio.

results show that the boundary effects are almost negligible when the domain size ratio

is greater than 8.
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Figure 2.19: Percentage of relative variation of the orientation versus domain size ratio.

Mesh size convergence

Simulations parameters
a

dx Ca λ L
a Law

6− 25 0.5 1 4 Neo-Hookean

Table 2.4: Summary of the red blood cell parameters for the mesh size convergence.

In this section, the effect of the mesh size on the results is investigated. The initially

spherical capsule is modelled with the Neo-Hookean law. Both mesh sizes for the fluid

and membrane are the same, decreasing with each successive case. The deformation and

orientation of the capsule after stabilization is then reported in figures 2.20 and 2.21.
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Figure 2.20: Percentage of relative variation of the deformation versus mesh size.
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Figure 2.21: Percentage of relative variation of the orientation versus mesh size.

Figure 2.20 and 2.21 shows that when the fluid and membrane meshes are not refined

enough, the associated variation in the results can be of the order of 5%. This indicates

that the membrane and fluid needs to be refined at least to a
dx = 10 to ensure acceptable

accuracy of the results. A study of the over-refinement of the membrane with respect

to the fluid refinement has been performed and a maximum variation of 0.5% has been
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found.

In the next sections, all test cases will be performed in a fixed domain (Fig. 2.22 and

Fig. 2.23) with a
dx = 10 and L

a = 16.

Figure 2.22: Numerical domain chosen for the linear shear flow test cases.

Figure 2.23: Zoom on the chosen numerical domain.

The membrane used in the following test cases is meshed with 2906 triangular ele-

ments as presented on Fig. 2.24.
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Figure 2.24: Membrane mesh in the linear shear flow test cases.

Neo-Hookean capsules in linear shear flow

In this section, the quality of the results is investigated in the case of the Neo-Hookean

Law for different values of the capillary number (Fig. 2.25). Our results are compared to

Walter et al. [201], Li et al. [115], Lac et al. [111] and Luo et al. [124]. The simulations

are performed in the limit of zero Reynolds number; as presented in Mendez et al. [132]

the inertial terms are not computed in order to reduce the computation time. This

approximation can create overshoots on the deformation and orientation of the cell

during the transient part of the simulation. It is not modifying the static results that

are reported here after stabilization of the cell.

Simulations parameters
a

dx Ca λ L
a Law

10 0.15− 0.9 1 16 NH

Table 2.5: Summary of the red blood cell parameters for the Neo-Hookean cases.

A good agreement with the literature is found for the asymptotic deformation pa-

rameter of the cell. As expected, the tank-treading behaviour of the cell (Fig. 2.16) is

observed in all theses cases. Some cases encountered did not reach convergence because

of the absence of bending resistance, allowing the creation of unwanted folds on the

extremities of the deformed capsules, the capillary number associated to these cases are

in agreement with the range of stability (0.45 < Ca < 0.63) found in Walter et al. [201]

.
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Figure 2.25: Asymptotic deformation versus capillary number in the case of the Neo-
Hookean law.

Skalak law capsules in linear shear flow

In this section, the quality of the results is investigated in the case of the Skalak Law for

different values of the capillary number (Fig. 2.26). Our results are compared to Walter

et al. [201], Li et al. [115] and Lac et al [111] over the range of parameters presented

in Table 2.6.

Simulations parameters
a

dx Ca λ L
a Law

10 0.15− 1.8 1 16 SK

Table 2.6: Summary of the red blood cell parameters for the Skalak law cases.

Figure 2.26 shows a good agreement with the literature. The tank-treading behaviour

of the cell is also observed in all the cases. A slight under estimation is found for the

case where Ca = 1.8. In this one, the ratio a
dx had to be increased to a

dx = 16 in order to

capture the large deformation of the cell. Further increase of this ratio did not reduce

the under estimation.
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Figure 2.26: Asymptotic deformation versus capillary number.

Effect of the calculation of viscosity

Using the Skalak law in a large domain, two ways of calculating the viscosity are

compared: eight calculations are run, at viscosity ratios 0.2 and 5.0 for capillary numbers

0.6 and 1.5 as presented in Table 2.7.

Simulations parameters
a

dx Ca λ L
a Law

10 0.6 and 1.5 0.2 and 5.0 16 SK

Table 2.7: Summary of the red blood cell parameters for the study of the effect of the
calculation of the viscosity.

The way of calculating the variable viscosity differs: we either use the classical

approach, in which the discrete Dirac function is also used to update the field of viscosity.

As in the front-tracking method presented in section 2.5, ensuring a smooth transition of

the viscosity field in the membrane region. It will be referred as Smooth in the following

tables. The second method is to determine if xn (a fluid grid node coordinates) is located

inside or outside the capsule. The viscosity is thus imposed without smooth transition,

with a jump through the membrane. In other words, the indicator function is here a

Heaviside function. This method will be called the Jump method and referred as Jump

in the following tables.
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Simulations parameters and results

D Ca = 0.6, λ =
0.2

Ca = 1.5, λ =
0.2

Ca = 0.6, λ =
5.0

Ca = 1.5, λ =
5.0

Smooth 0.4527 0.5755 0.267 0.282
Jump 0.4521 0.5735 0.268 0.281

Table 2.8: Results of the asymptotic deformation D for the study of the calculation of
the viscosity.

Simulations parameters and results

θ/π Ca = 0.6, λ =
0.2

Ca = 1.5, λ =
0.2

Ca = 0.6, λ =
5.0

Ca = 1.5, λ =
5.0

Smooth 0.1588 0.1307 0.0543 0.032
Jump 0.1587 0.1306 0.0548 0.033

Table 2.9: Results of the asymptotic orientation θ/π for the study of the calculation of
the viscosity.

Results displayed in Tables 2.8 and 2.9 show that the method to compute the viscos-

ity field has a very limited impact on the results in terms of deformation and inclination

angles of the capsules. In the following, the jump method is used since it is computa-

tionally cheaper.

Comparison with an equivalent numerical method and effect of the

regularization procedure

In order to estimate the effect of the regularization procedure on the results, the results

of simulations for the case also used by Luo et al. [123] are reported. In that case,

C = 1 and λ = 1. The size of the domain Lx× Ly × Lz is Lx = 8a, Ly = 8a, Lz = 5a

in the paper of Luo et al. [123], it is kept the same here.

A Cartesian mesh is used to compare the original regularization by Peskin (STRUC-

TURED) to the unstructured versions at the first order (RKPM1) and the second order

(RKPM2). The type of regularization performed is varied, and results in terms of

deformation and orientation are displayed in Figures 2.27 and 2.28.

Simulations parameters
a

dx Ca λ Law
10 0.15− 1.8 1 SK

Table 2.10: Summary of the red blood cell parameters for the regularization procedure
comparison cases.
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Figure 2.27: Asymptotic deformation versus capillary number. Comparisons of results
by Foessel et al. [75], Luo et al. [123] and YALES2BIO. YALES2BIO results are
generated using three different regularizations procedures: the classical cosine function
for STRUCTURED meshes, and the unstructured method at the first order (RKPM1)
and second order (RKPM2).

θ π
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Figure 2.28: Asymptotic orientation versus capillary number. Comparisons of results
by Foessel et al. [75], Luo et al. [123] and YALES2BIO.
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YALES2BIO results are generated with a rather coarse mesh: the number of points

per radius is 10, while Luo et al. [123] present results for 8, 12 and 16. Using a

classical cosine window, results are close to the ones obtained by Luo et al. using

a/dx = 12. However, using the unstructured regularization procedure at the second

order, the deformation parameter D at high capillary number gets much closer to the

reference data by Foessel et al. [75]. The inclination angles are well predicted by the

different methods. Note also that at low capillary numbers, the structured procedure

and the RKPM1 procedure overestimate D, while using RKPM2 improves the results.

Comparisons with the Foessel data at various viscosity ratio

Simulations parameters
a

dx Ca λ L
a Law

10 0.15− 1.8 0.2− 5 16 SK

Table 2.11: Summary of the capsule parameters for the comparison with Foessel data
cases.

Here, the ‘best’ setup is used as the viscosity ratio is varied: the domain is large,

with L/a = 16 to ensure that the size of the domain has no influence on the results.
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λ = 0.2
λ = 1.0
λ = 5.0
λ = 0.2
λ = 1.0
λ = 5.0

Figure 2.29: Asymptotic deformation versus capillary number. Comparisons of
YALES2BIO results with data by Foessel et al. [75], at three different viscosity ra-
tios.

In addition, an unstructured grid is used with a regularization at the second order.
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The Jump method is used to calculate the viscosity (sudden jump in the viscosity of

the fluid is imposed at the membrane location between the internal and the external

values).

λ = 0.2
λ = 1.0
λ = 5.0
λ = 0.2
λ = 1.0
λ = 5.0

θ π

Ca

Figure 2.30: Asymptotic orientation versus capillary number. Comparisons of
YALES2BIO results with data by Foessel et al. [75], at three different viscosity ra-
tios.

Results are in good agreement with the reference data generated by Foessel et al.

[75]. The largest differences are obtained at λ = 5.0: the deformation parameter is

underestimated compared to the reference data. However, inclination angles are well

reproduced. Except for D at λ = 5.0 and for Ca higher than 0.6, where errors are of

the order of 3%, the agreement is excellent.

2.8.5 Red blood cells in simple shear flow

As a canonical configuration to understand the behavior of red blood cells under flow,

the case of an isolated red blood cell flowing in an unconfined pure shear flow has been

extensively studied over the last decades. However, in spite of numerous theoretical,

experimental and numerical studies on the topic, this simple configuration continues to

reveal new aspects of the red blood cell dynamics.

Behavior of a red blood cell in a simple shear flow

As it is relatively easy to perform experimentally, this test case has been investigated

extensively over the years. Since the 1970s, two types of motion have been known to

occur: the tumbling motion was observed for instance by Goldsmith and Marlow [84],
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where the red blood cell flips in the flow like a rigid body. Another regime was also

identified, where the red blood cells ‘oriented themselves at a constant angle to the flow

and their membrane appeared to rotate about the interior’, as stated by Goldsmith

and Marlow [84], analogously of a droplet. This regime, referred to as tank-treading to

describe the movement of the membrane about the cell interior, was especially visible in

viscous Dextran solutions. This movement was then observed in details by Fischer and

collaborators [70, 71, 74], in particular. Their detailed visualizations of tank-treading

red blood cells were performed in a viscous suspending medium, typically twenty to

forty times the viscosity of plasma [74]. The biconcave shape of the red blood cell was

observed to be conserved for low and moderate shear rates. For high shear rates, the

red blood cell strongly deforms to an ellipsoid. The dynamics of red blood cells was

notably shown to depend on the viscosity ratio between the internal medium and the

suspending fluid. In 1982, Keller & Skalak [104] published an analytical model, able to

predict either a steady orientation or a tumbling regime depending on the viscosity ratio,

notably, but failed to predict the tumbling to tank-treading transition as a function of

the shear rate [3].

The case of high viscosity of the suspending medium and moderate shear rates has

been investigated in the 2000s, in particular to study the tumbling to tank-treading

transition, for shear rates of 1.0 s−1 approximately. By doing so, and thanks to side-

view microscopic imaging, a new motion has been unraveled: the swinging, where the

orientation of the cell in the tank-treading motion is seen to oscillate around a mean

value [3]. It has been described by analytical models by Skotheim & Secomb [175] and

Abkarian, Faivre & Viallat [3] by adding the contribution of the elasticity of the cell

membrane to the Keller & Skalak model (more details in Chapter 3). These models

were able to predict the amplitude of the oscillation of the orientation of the cell and the

transition between the tank-treading and tumbling motions as a function of the shear

rate.

Numerically, the challenge has been to take all the mechanical effects into account.

When the viscosity of the cytoplasm (inner fluid), bending and shear elasticity were

accounted for, the swinging motion and transitions between motions were retrieved.

However, until recently, the shear rates for the transition were overestimated. Recent

studies showed the importance of the stress-free shape of the cell on these results [147]:

the biconcave stress-free shape implied large deformations at the transition between

tank-treading and flipping, as well as inaccuracies in retrieving the critical values of the

shear rate of tumbling to tank-treading transition.

The recent success of numerous groups in retrieving experimental results has led

to community to adopt the following strategy for the a priori unknown cytoskeleton

stress-free shape: in numerical simulation a spheroidal stress-free shape is desired. It

cannot be a sphere, as there would be no shape memory [71], but it should be close to

a sphere, typically an oblate ellipsoid of volume ratio higher than 0.95 [38, 147, 189].

This choice enables to better recover the tumbling to tank-treading transition, predict
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the swinging motion and also to maintain the biconcave shape under moderate shear

stresses. It also improves predictions of analytical models derived from the Keller &

Skalak model [56].

More recently, additional experiments for physiological viscosity of the suspending

medium revealed that tumbling, swinging and tank-treading were not the only regimes

present for a red blood cell. In particular the off-shear plane dynamics was studied,

and Dupire, Socol and Viallat [57] showed that when increasing the shear rate, the

tumbling motion is unstable and the movement changes to rolling, where the red cells

align their small axis with the vorticity direction. In the rolling motion, the cell is

almost undeformed. Additional movements of so-called kayaking/hovering/frisbee-like

movements were also reported at higher shear rates [36, 38, 57]

The difficulty of imaging flowing cells at high velocity explains that the regime at

high shear stresses and physiological viscosity ratio has not been studied until 2014-2015,

by Lanotte and Abkarian [4]. New visualizations show that the dynamics revealed by

Dupire et al. does not fully describe the movements of red blood cells. Lanotte and

Abkarian [4] notably show that when red blood cells are suspended in plasma (or a

fluid of similar viscosity), at shear rates higher than a few hundreds, polylobed complex

shapes are observed, with a typical sequence of stomatocytes, trilobe, tetrahedra, star-

tetralobes, etc. These shapes have also been observed in numerical simulations by

Mauer, Fedosov and Gompper and by Mendez (using YALES2BIO). Publications are

in preparation.

Numerical simulations

The dynamics of red blood cells in a simple unconfined shear flow is thus extremely

complex and a full description of this flow is not the objective of this thesis. Only a few

cases are presented to show the ability of YALES2BIO to reproduce typical dynamics,

in the case where the viscosity of the suspending medium is higher than that of the

cytoplasm.

The computational domain is shown in Fig. 2.31a). It consists of a cube of edge L,

with the origin at its center, closed by two sliding walls at y = ±L/2 and by periodic

boundary conditions in the other directions. x is the direction of the main flow, y is the

direction of the velocity gradient and z the vorticity direction. In the absence of red

blood cell, the flow is linear ~v = ky ~ex.

At the beginning of the simulations, a cell is deposited in its resting shape, with

its center of mass at the origin and its small axis aligned with the x direction. The

Reynolds number is 0.1 in all the simulations, and the viscosity ratio (internal viscosity

µint divided by the external viscosity µext) is always 0.2, the viscosity inside the cell

being 5 times smaller than the external viscosity. Results will be displayed in terms

of the capillary number, defined as Ca = µextka/Es, where a is an equivalent radius

of the particle (a = 2.82 µm) and Gs the shear modulus. Here, the in-plane elasticity

is described by the Skalak model, with C = 30, which is sufficient to ensure a good
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conservation of the total area of the red blood cell. The bending model by Helfrich is

used, with Eb = 6.0×10−19 J. A positive spontaneous curvature is imposed, of C0 = 1.41

µm−1. The stress-free shape is an ellipsoid with volume ratio 0.99. Values are identical

to the ones chosen by Cordasco et al. [38] in their analysis of the effect of stress-free

shapes on RBC in shear flow.

The fluid domain is discretized by a Cartesian grid of 603 elements (L/a is of the

order of 7.5, which yields a resolution of 0.35 µm). The membrane is discretized with a

similar resolution (approximately triangular 2000 faces).

a)

L z

x

y

b)

z

x

lz

lx

Figure 2.31: Computational configuration of interest. Computational domain definition
(a) and definition of the extensions of the cell in the tank-treading regime (b).

Typical dynamics is displayed for three cases in Fig. 2.32, at capillary numbers

a) Ca = 0.02 , b) Ca = 0.04 and c) Ca = 0.28, for which tumbling, swinging and

tank-treading (with very small swinging oscillations) are observed. The regimes are

consistent with the observations of Abkarian, Faivre & Viallat [3] (in a suspending

medium of viscosity µext = 0.031 Pa.s for instance, Ca = 0.02, 0.04 and 0.28 correspond

to k = 0.6 s−1, 1.2 s−1 and 8.0 s−1, respectively.

At higher shear rates, the red blood cell tank-treads. Figure 2.31b shows how

simulations are compared to experimental data: lengths in the flow (lx) and vorticity

(lz) directions are measured and a projected deformation rate D = (lx − lz)/(lx + lz) is

calculated. This quantity is compared to experimental data from direct visualizations

and ektacytometry [70, 87, 187] in Fig. 2.33. The experimental capillary numbers are

calculated by assuming the same value for the shear modulus as in the computations,

Gs = 2.5 µN.m−1. As for swinging, small oscillations of D are observed over time, so

only the average value is displayed. Good agreement with experimental data is shown,
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a) Re = 0.1, λ = 0.2, Ca = 0.02. Images every kt = 1.25.

b) Re = 0.1, λ = 0.2, Ca = 0.04. Images every kt = 2.5.

c) Re = 0.1, λ = 0.2, Ca = 0.28. Images every kt = 2.5.

Figure 2.32: a) Tumbling, b) swinging and c) tank-treading of red blood cells, shown
by a sequence of shapes in calculations.
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Figure 2.33: Projected deformation index D of tank-treading red blood cells as a func-
tion of the capillary number Ca. Numerical results are compared with data from Fischer
(1980) [70], Tran-Son-Tay et al. (1984) [187] and Hardeman et al. (1994) [87].

albeit with over-estimations of the deformation at high capillary numbers.

In conclusion, the numerical method introduced in this chapter is able to simulate

the dynamics of deformable particles, particularly red blood cells in flow at arbitrary

Reynolds number, which is an important feature since it is often overlooked in favor of

simulations in the physiological context. The solver has been validated against several

test cases, assessing of the quality of the results in dynamical and stationary setups.
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Since the early twentieth century, a number of studies focused on the modeling of

the dynamics of the orientation of solid ellipsoidal particles in various configurations.

Notably, Jeffery [99] opened the way with an insightful paper published in 1922 de-

scribing the orientation of a solid ellipsoidal particle in general flows. Roscoe [165]

later extended the scope of this paper to viscoelastic particles suspensions with surface

motion, which is one of the field of application of Jeffery’s theory nowadays. Keller &

Skalak [104] introduced a model based upon Jeffery’s and Roscoe’s works for modeling

the dynamics of red blood cells in a linear shear flow, using the model of a fixed-shape

ellipsoidal particle with an imposed membrane velocity, reproducing the well-known

tank-treading movement witnessed in experiments [70, 72, 74, 187]. While the Keller &

Skalak model is able to reproduce the tank-treading and the tumbling movements and

their transition with the internal-to-external viscosity ratio, the model results do no

67
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depend on the shear rate, while a shear rate dependency is obtained experimentally. In

2007, two groups proposed a modification of the Keller & Skalak model, introducing the

elasticity of the membrane [3, 175]. This improvement enabled to recover the tumbling-

to-tank-treading transition with the shear rate. The framework of Jeffery’s theory is

general and several papers proposed a new analytical derivation of it, such as the work

of Ježek [100] or Junk [102]. However, models relative to red blood cells were only de-

rived for the linear shear flow. Other models, such as the one of Vlahovska et al. [198],

consider non-fixed shaped particles without an imposed membrane velocity and could

have been used to model the dynamics of red blood cells in the blood analyzer. However,

since these models consider that the cell is quasi-spherical, which is a strong approx-

imation on the shape of the red blood cell, they have not been used in this present work.

This section aims at adaptating the Keller & Skalak model and the extension of

Abkarian, Faivre & Viallat in the case of a hyperbolic flow which is typical to the

velocity field red blood cells are undergoing in the blood analyzer. This work relies

on the paper of Keller & Skalak [104] and Abkarian, Faivre & Viallat [3], but using

a hyperbolic flow as the carrying flow. The derivation of the Keller & Skalak model

and the extension of Abkarian, Faivre & Viallat are first presented in the case of an

axi-symmetric elongational flow and thoroughly explained, as it has been found that

some analytical tricks and expressions were not detailed in the original paper of Keller

& Skalak. Then, the models are investigated for an ellipsoidal particle in a planar

elongational flow.

3.1 Derivation of the Keller & Skalak model

In order to facilitate the comparison with the Keller & Skalak model derived for pure

shear flow, the same structure is used for presenting the analysis, and notations are

conserve as much as possible.

3.1.1 Formulation of the problem

An ellipsoidal membrane containing a viscous fluid is subjected to an elongational flow.

As in the seminal work of Keller & Skalak, the shape of this ellipsoidal membrane is

considered fixed and axes are defined as in Fig. 3.2, where x̂i denote coordinates in

a fixed Cartesian coordinate system, and xi denote coordinates in a second Cartesian

coordinate system of same origin, whose axes correspond to the principal axes ai of the

ellipsoidal shape and referred to as the body frame. x̂3 and x3 are assumed to coincide,

when the x1 and x2 axes are rotated by an angle θ with respect to the x̂1 and x̂2 axes.

Angle θ is positive for a counter-clockwise rotation and depends on time, thus, the

angular velocity θ̇ is defined as:

θ̇ =
dθ

dt
, (3.1)
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θ

Figure 3.1: Schematic of an ellipsoidal membrane filled with fluid of viscosity µ′ sus-
pended in a fluid of viscosity µ, with the definition of the coordinate frames used in the
analytical developments.

The quantity a0 = (a1a2a3)
1
3 is introduced for the ellipsoidal membrane of semi-axes

ai, allowing the definition of αi as:

αi =
ai

a0
, (3.2)

The velocity of the fluid external to the particle relative to the fixed frame and expressed

in the body frame is denoted by v̂i. Alternatively, the velocity relative and expressed in

the body frame is denoted by vi. The components of the velocity of the internal fluid

are denoted by v̂i
′ and v′

i. The flow is supposed to be governed by Stokes equations and

the continuity equation, thus:

µvi,jj = p,i vi,i = 0, (3.3)

µ′v′

i,jj = p′

,i v′

i,i = 0, (3.4)

where p and p′ are the pressure fields and µ and µ′ are the viscosity associated with

the external fluid and the fluid inside the membrane, respectively. The notation of

the Keller & Skalak paper is used, where a comma followed by subscript i denotes the

derivative with respect to xi.

The undisturbed velocity field (far from the particle) relative to the fixed frame is an

axi-symmetric elongational flow, thus:































û1
0 = κx̂1

û2
0 = −κ

2 x̂2

û3
0 = −κ

2 x̂3

, (3.5)
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with κ the extensional rate. Referred to the body frame this undisturbed velocity field

writes:


































v̂1
0 = κ

[

x1

(

cos2 θ − 1
2 sin2 θ

)

+ x2

(

−3
4 sin 2θ

)]

v̂2
0 = κ

[

x1

(

−3
4 sin 2θ

)

+ x2

(

sin2 θ − 1
2 cos2 θ

)]

v̂3
0 = −κ

2x3

, (3.6)

Keller & Skalak [104] define the membrane surface velocity vm
i relative to and referred

to the body frame as,

vm
1 = −ω̇

(

a1

a2

)

x2, vm
2 = ω̇

(

a2

a1

)

x1, vm
3 = 0, (3.7)

with ω̇ the tank-treading frequency. The components of the unit outer normal to ∂E

(the surface of the particle) in the body frame write

ni =

(

xi

a2
i

)(

x2
j

a4
j

)

−
1
2

(sum on j, no sum on i), (3.8)

which implies

vm
i ni = 0, (3.9)

corresponding to the fact that the surface velocity is everywhere tangent to ∂E. As

mentioned in [104], since vm
3 = 0, material surface points move along elliptical paths in

planes parallel to the (x1,x2)-plane. For positive values of ω̇, the membrane motion is in

the counter-clockwise direction when viewed from the positive x3 axis. The boundary

conditions imposed on the internal and external fluids are:































vi = vm
i on ∂E

vi → v0
i as |x| → ∞

v′

i = vm
i on ∂E

(3.10)

3.1.2 External flow and equilibrium

The components of the surface-stress vector referred to the body frame are introduced

as

Ti = −p′′ni + µ
(

A∗

ij + 2em
ij

)

nj , (3.11)

where p′′ is an arbitrary constant pressure and the strain rate em
ij is defined as,

em
ij =

1

2

(

vm
j,i + vm

i,j

)

. (3.12)

The first term of Eq. (3.11) represents the surface stress created on the particle by the

surrounding pressure field. The second term gathers the effect of the velocity field on
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the particle through the strain rate em
ij and a tensor Aij∗ that depends on the shape

of the particle. Introducing the following geometrical integrals only depending on the

shape of the membrane,



















































g1 =

∫

∞

0

ds

(α2
1 + s)∆

g′

1 =

∫

∞

0

ds

(α2
2 + s)(α2

3 + s)∆

g′′

1 =

∫

∞

0

sds

(α2
2 + s)(α2

3 + s)∆

(3.13)

with,

∆2 = (α2
1 + s)(α2

2 + s)(α2
3 + s), (3.14)

the tensor element A∗

11 is defined as

A∗

11 =
4

3

2g′′

1e
∗

11 − g′′

2e
∗

22 − g′′

3e
∗

33

g′′

2g
′′

3 + g′′

3g
′′

1 + g′′

1g
′′

2

. (3.15)

Note that in the original paper of Keller & Skalak [104], the expression for A∗

11 is

erroneous, with gi in the numerator instead of the present g′′

i as found in Jeffery [99],

Roscoe [165] and Ježek [100]. The expressions for A∗

22 and A∗

33 can be obtained by cyclic

permutations. The tensor elements A∗

12 and A∗

21 read

A∗

12 = 4
g1e

∗

12 − α2
2g

′

3(ζ∗

12 − ǫ12kωk)

g′

3(α2
1g1 + α2

2g2)
, (3.16)

A∗

21 = 4
g2e

∗

21 − α2
1g

′

3(ζ∗

21 − ǫ21kωk)

g′

3(α2
1g1 + α2

2g2)
. (3.17)

with ǫijk the alternating tensor (Levi-Civita symbol). For i 6= j, the other elements of

A∗

ij can be obtained by permutations. The quantities in all elements of A∗

ij are defined

as

e∗

ij = e0
ij − em

ij , e0
ij =

1

2

(

v̂0
j,i + v̂0

i,j

)

, (3.18)

and,

ζ∗

ij = ζ0
ij − ζm

ij , (3.19)

with,

ζm
ij =

1

2

(

v̂m
j,i − v̂m

i,j

)

. ζ0
ij =

1

2

(

v̂0
j,i − v̂0

i,j

)

, (3.20)

which will be detailed later in the case of the hyperbolic flow. Finally, ωk is the angular

velocity of the ellipsoid with respect to the fixed frame. For the case considered, the

following values for ωk are straight-forward:

ω1 = 0, ω2 = 0, ω3 = θ̇. (3.21)
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The expression for Ti in Eq. (3.11) is valid for any undisturbed velocity flow and mem-

brane velocity vm
i that are both linear in xi. Any angular velocity ωi can also be

considered. The stress vector Ti may be written as

Ti = cijnj , with cij = −p′′δij + µ
(

A∗

ij + 2em
ij

)

(3.22)

The ellipsoidal particle membrane undergoes a force exerted by the external fluid, which

components in the body frame are

Fi =

∫

∂E
cijnjdA. (3.23)

Fi = 0 as the contour ∂E is closed and cij are constant with respect to xi. The

circulation of the normal nj is obviously always null. A moment about the origin

is exerted by the external liquid on the ellipsoidal membrane. At any instant, the

components of this resultant moment in the body frame are

Mi =

∫

∂E
ǫijkxjcklnldA. (3.24)

Also, note that
∫

∂E
xinidA = V (no sum), (3.25)

where V is the volume of the ellipsoid. Since

∫

∂E
xinjdA = 0 if i 6= j, it is possible to

state that

M3 = V (c21 − c12). (3.26)

The considered hyperbolic flow, Eq. (3.5), implies the following results for e∗ and ζ∗:

e∗ =









κ(cos2 θ − 1
2 sin2 θ) −3

4κ sin 2θ − ω̇
2

(

a2
2−a2

1
a1a2

)

0

−3
4κ sin 2θ − ω̇

2

(

a2
2−a2

1
a1a2

)

κ(sin2 θ − 1
2 cos2 θ) 0

0 0 −κ
2









(3.27)

ζ∗ =









0 − ω̇
2

(

a2
2+a2

1
a1a2

)

0

ω̇
2

(

a2
2+a2

1
a1a2

)

0 0

0 0 0









(3.28)

Using the fact that α2
i g

′

j + g′′

j = gk with i 6= j 6= k and substituting the expressions

of e0, em, e∗, ζ0, ζm and ζ∗ for the carrying hyperbolic flow in c12 and c21, it may be

shown that,

M3 = MH
3 +MF

3 +MT
3 , (3.29)

with,






























MH
3 = −C 3

4κ sin 2θ(a2
1 − a2

2)

MF
3 = −Cθ̇(a2

1 + a2
2)

MT
3 = −C2a1a2ω̇

, (3.30)
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and,

C =
4µV

a2
1g1 + a2

2g2
. (3.31)

MH
3 corresponds to the effect of the external hyperbolic flow on the stationary particle at

angle θ. MF
3 is the moment acting on the rigid ellipsoid flipping around the x3 axis. MT

3

is the moment on the ellipsoidal particle undergoing a possible tank-treading motion.

The membrane is considered neutrally buoyant, so that no forces or couples are exerted

and that inertial effects can be neglected. Each fluid element inside the membrane is

thus in equilibrium, which implies that the whole membrane is also in equilibrium at

each instant of time. Thus, the resultant force and moment exerted by the external fluid

must vanish at each instant, which leads to M3 = MH
3 +MF

3 +MT
3 = 0. Substituting

the values for MH
3 , MF

3 and MT
3 in the previous equation yields:

θ̇ = Ã+ B̃ sin 2θ, (3.32)

with

Ã = − 2a1a2

a2
1 + a2

2

ω̇ B̃ = −3

4

a2
1 − a2

2

a2
1 + a2

2

κ. (3.33)

It is interesting to note that only the expression for MH
3 changes when using a hyperbolic

carrying flow instead of the linear shear flow, MS
3 in Keller & Skalak’s analysis. It is

justified by the fact that this term is associated with the moment due to the shear flow

in the reference paper. It results in the presence of a sine term instead of a cosine term

and a modification of factors Ã and B̃ in Eq. (3.32).

3.1.3 Internal flow and conservation of energy

The surface velocity from Eq. (3.7) is extended as the solution for the internal velocity

field v′

i:

v′

1 = −ω̇
(

a1

a2

)

x2, v′

2 = ω̇

(

a2

a1

)

x1, v′

3 = 0. (3.34)

The internal velocity field from Eq. (3.34) satisfies Eq. (3.4) and the last line of Eq. (3.10).

The dissipation function corresponding to v′

i writes:

Φ′ = µ′f1ω̇
2, (3.35)

where,

f1 = (r2 − r−1
2 )2, r2 =

a2

a1
, (3.36)

Since Φ′ is considered homogeneous in space, the rate D′ at which energy is dissipated

in the internal fluid is defined as:

D′ = V µ′f1ω̇
2. (3.37)

The reader is referred to the paper of Keller & Skalak [104] for a discussion about the

energy dissipation of the membrane which may be even greater than the internal fluid
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dissipation. For the sake of simplicity and clarity, the membrane energy dissipation is

considered to be zero here, even though it is possible to add the contribution of the

membrane by increasing the inner viscosity µ′ to a greater value µapp.

The total rate at which the work exerted by the external flow over the whole particle is

done can be expressed as

Wp =

∫

∂E
cijnj v̂

m
i dA. (3.38)

Thanks to the equilibrium condition (M3 = 0), it is possible to write Eq. (3.38) as:

Wp =

∫

∂E
cijnjv

m
i dA. (3.39)

Starting from Eq. (3.39), we compute:

Wp =

∫

∂E
( c11n1v

m
1 + c12n2v

m
1 + c13n3v

m
3 + (3.40)

c21n1v
m
2 + c22n2v

m
2 + c23n3v

m
3 +

c31n1v
m
3 + c32n2v

m
3 + c33n3v

m
3 ) dA.

Since vm
3 = 0, the last line of Eq. (3.40) is null. Also, from the expressions of e0, em,

e∗, ζ0, ζm and ζ∗, it is easy to find that c23 = c13 = 0, so that:

Wp =

∫

∂E
(c11n1v

m
1 + c12n2v

m
1 + c21n1v

m
2 + c22n2v

m
2 ) dA, (3.41)

From the expression of vm
1 and vm

2 , it yields that the terms in c11 and c22 are zero, since
∫

∂E
nixjdA = 0. Thus,

Wp =

∫

∂E
(c12n2v

m
1 + c21n1v

m
2 ) dA, (3.42)

Using the fact that g′

3 = g2−g1

α2
1−α2

2
, the following expression is found:

Wp = µV ω̇2

(

a2
1 − a2

2

a1a2

)2

− 2µV ω̇2

g′

3(α2
1 + α2

2)

(

a2
1 − a2

2

a1a2

)2

+
3µV ω̇κ sin 2θ

g′

3(α2
1 + α2

2)

(

a2
1 − a2

2

a1a2

)

, (3.43)

which can be rewritten as:

Wp = µV

(

f2ω̇
2 − 3

2
f3κω̇ sin 2θ

)

(3.44)

with

z1 =
1

2
(r−1

2 − r2) and z2 = g′

3(α2
1 + α2

2) (3.45)

f2 = 4z2
1(1− 2

z2
) and f3 = −4z1

z2
. (3.46)

(3.47)
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Thus, the work of the external force must equal the internal dissipation at equilibrium

(Wp = D′), we obtain a quadratic equation in ω̇, which is satisfied by either ω̇ = 0 or

ω̇ =
3f3κ sin 2θ

2(f2 − λf1)
, (3.48)

Using this value of ω̇, Eq. (3.32) finally writes:

θ̇ = Ã sin 2θ, (3.49)

with,

Ã = − κ

(a2
1 + a2

2)

(

3
a1a2f3

(f2 − λf1)
+

3(a2
1 − a2

2)

4

)

. (3.50)

This differential equation can be solved analytically, resulting in:

θ(t) = arctan(tan(θ0)e2Ãt) (3.51)

It is obvious that θ = 0◦ is a stable solution for θ̇ = 0, the case of θ = 90◦ is an

unstable equilibrium state since θ̇ is negative for θ < 90◦ and positive for θ > 90◦ thus

bringing the capsule to θ = 180◦ over time, which is qualitatively equal to θ = 0◦ due

to symmetries. Also, the tank-treading frequency ω̇ can be written as,

ω̇ =
3f3κ sin(2 arctan(tan(θ0)e2Ãt))

2(f2 − λf1)
. (3.52)

3.1.4 Abkarian, Faivre & Viallat’s variation

The extension of Abkarian, Faivre & Viallat introduced in their recent work [3] is used

to complete the model. It adds the elastic contribution of the membrane to energy equa-

tion. This extension enabled to recover the swinging motion witnessed in experiment,

together with other complex features as an intermittent swinging-tumbling movements.

In concrete terms, the balance of energy is modified by a term representing the elastic

storage of energy in the membrane:

Wp = D′ + Pel = V µ′f1ω̇
2 + Pel (3.53)

with,

Pel =

∫

Ω
Tr(σ : em

ij )dΩ =
1

2
ω̇

(

a2
2 − a2

1

a1a2

)2

Gs sin 2ω Ω, (3.54)

with Ω, the volume of the cell membrane, and Gs the shear modulus. The shear stress

tensor σ is defined as for a simple linear 3D thin visco-elastic with the Kelvin-Voigt

model. The same idea was also pursued by Skotheim and Secomb [175] at the same

time. There, the elastic energy term was estimated globally, without a calculation

from a specific law. More advanced mechanical behaviors would add complexity to the
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calculation, whereas the simple Kelvin-voigt model already yields very good results [3,

56]. Hence,

σ = 2µmem
ij + 2GsE. (3.55)

with E the Euler-Almansi strain tensor obtained from the displacements induced by the

membrane velocity and µm the membrane viscosity. The shear stress tensor σ can be

written as the sum of a fluid and an elastic part: σ = σel + σfluid, corresponding to the

contributions of the lipid bilayer and the cytoskeleton in the case of a red blood cell.

The fluid contribution can be written as,

σfluid = −pI + 2µem
ij . (3.56)

where p is the pressure in the membrane. Since the membrane is considered as an

isotropic, incompressible, homogeneous and linear elastic material, the elastic contri-

bution to the strain tensor can be expressed using the Piola-Kirchhoff stress tensor:

πel = π0I + 2Gse, where π0 is the initial stress of the membrane. π0 is supposed to be

0, as in the initial work of Abkarian et al. [3], thus assuming the ellipsoidal shape is the

stress-free shape. e is the strain tensor, which can be computed from the trajectory of

a point on the membrane xk:

x1(t) = x0
1 cos(ω)− a1

a2
x0

2 sin(ω) (3.57)

x2(t) = x0
2 cos(ω) +

a2

a1
x0

1 sin(ω)

x3(t) = x0
3

where ω corresponds to the phase angle of a membrane element and x0
k are the initial

vectorial positions. Thus,

eij =
1

2

(

∂xk

∂x0
i

∂xk

∂x0
j

− δij

)

. (3.58)

Therefore, πel is simply expressed using an infinitesimal tangential transformation F ≡
∂xi

∂x0
j

:

σel = T F−1 : 2Gse : F−1. (3.59)

with,

F =







cosω −a1
a2

sinω 0
a2
a1

sinω cosω 0

0 0 1






(3.60)

Thus, the shear stress tensor σ writes:

σ = −pI + 2µem
ij +T F−1 : 2Gse : F−1 (3.61)

From Eq. (3.61), it is easy to compute the integrand Tr(σ : em
ij ) of Eq. (3.54):

Tr(σij : em
ij ) = 2µTr(em

ij : em
ij ) + 2GsTr(

T F−1 : e : F−1 : em
ij ) (3.62)
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which when integrated, results in the right hand-side of Eq. (3.54). Using Eq. (3.53)

and the expression for Pel of Eq. (3.54), the model turns into two differential equations:

θ̇ =
−2a1a2ω̇

a2
1 + a2

2

− 3(a2
1 − a2

2)

4(a2
1 + a2

2)
κ sin 2θ, (3.63)

and,

ω̇ =
f3κ

(f2 − λf1)

[

3

2
sin 2θ +

f1

2f3

EsΣ

µκV
sin 2ω

]

, (3.64)

where Σ is the surface of the membrane. It is easy to see that if the surface shear

modulus is null (Es = 0), Eq. (3.48) is retrieved.

3.1.5 Planar elongational flow derivation

In this section, the results of the analysis in a planar elongational flow are presented

for the sake of completeness. The carrying flow is considered two-dimensional for the

sake of simplicity. The previous models are thus derived again following the previously

presented method, only applied to a velocity field defined as:































û0 = κx̂

v̂0 = −κŷ

ŵ0 = 0

(3.65)

Keller & Skalak

The Keller & Skalak model is derived once again, the development in 2D is straight-

forward and similar to the 3D case, as only the terms e∗ and ζ∗ change. It finally results

in,

θ̇2D = A2D +B2D sin 2θ2D, (3.66)

with,

A2D = − 2a1a2

a2
1 + a2

2

ω̇2D B2D = −a
2
1 − a2

2

a2
1 + a2

2

κ. (3.67)

where,

ω̇2D =
f3κ sin 2θ2D

(f2 − λf1)
, (3.68)

The equation for θ̇2D can thus be written as:

θ̇2D = Ã2D sin 2θ2D, (3.69)

with,

Ã2D =
κ

(a2
1 + a2

2)

(

− 2a1a2f3

(f2 − λf1)
− (a2

1 − a2
2)

)

. (3.70)

smendez
Note
factor 2 missing

smendez
Note
factor 2 missing
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Note that the difference in the evolution equation for θ between the 3-dimensional case,

in Eq. (3.49), and the 2-dimensional case, in Eq. (3.69), is small. Again, this differential

equation can be solved analytically, resulting in:

θ2D(t) = arctan(tan(θ0)e2Ã2Dt) (3.71)

Abkarian, Faivre & Viallat

Once again, the Abkarian, Faivre & Viallat variation can be introduced in the Keller

& Skalak model for a 2D hyperbolic flow, without taking the membrane viscosity into

account, i.e µm = 0.

θ̇2D =
−2a1a2ω̇

a2
1 + a2

2

− (a2
1 − a2

2)

(a2
1 + a2

2)
κ sin 2θ, (3.72)

and,

ω̇2D =
f3κ

(f2 − λf1)

[

sin 2θ +
f1

2f3

EsΣ

µκV
sin 2ω

]

, (3.73)

with Σ the surface of the cell membrane and µ the external viscosity. Again, if the

surface shear modulus is null (Es = 0), Eq. (3.69) is retrieved.

3.1.6 Jeffery’s theory

This model has been introduced by Jeffery [99]. It is here presented in a simplified

two-dimensional version. It is used to predict the orientation of a rigid ellipsoid in a

Stokes flow. It differs from the previous models as it does not take a membrane velocity

or an elastic contribution into account. The direction of the cell is represented by the

orientation vector ~p, which is identical to the x1 vector from Fig. 3.2, in the x̂1 − x̂2

plane:

~p =

(

cos θ

sin θ

)

. (3.74)

with θ the angle between ~p and the x̂1-axis. From the fluid flow, the variation of this

vector can be calculated using:

∂pi

∂t
= Rijpj +D(Sijpj − Sklpkplpi), (3.75)

with,

D =
a2

1 − a2
2

a2
1 + a2

2

, R =

(

0 0

0 0

)

, S =

(

κ 0

0 −κ

)

. (3.76)

with R and S, the antisymmetric and symmetric parts of the velocity gradient tensor,

respectively. D is the aspect ratio of the particle in the plane. If Eq. (3.75) is expanded

with the values for S in the case of a 2D hyperbolic flow, the following expression is

easily found:

θ̇ = −κa
2
1 − a2

2

a2
1 + a2

2

sin 2θ, (3.77)

smendez
Note
factor 2 missing
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which corresponds to the Keller & Skalak and Abkarian, Faivre & Viallat models with

particular hypotheses on the viscosity ratio or capillary number, as explained in the next

section. Jeffery’s model is easily obtained from the K&S model and the AFV model by

imposing ω̇ = 0 in Eq. (3.66).

3.2 Models behavior in the case of a planar elongational

flow

The behavior of the previously derived models are presented in the case of a particle

deposited in a 2-dimensional hyperbolic flow with a constant extensional rate κ. From

its initial orientation θ = 45◦, it is expected to orient so that its longer axis is aligned

with the direction of extension, defined as θ = 0◦. The influence of two parameters are

investigated: the capillary number Ca, which influences the Abkarian, Faivre & Viallat

model through the surface shear modulus and the viscosity ratio λ, which is accounted

for in both models. The Jeffery model is also used.

3.2.1 Parameters

In order to define the case considered, several parameters are introduced:

• The capillary number associated to the particle

Ca =
µκa1

Es
, (3.78)

with Es the surface shear modulus of the capsule membrane. Ca is the ratio of

the viscous effects over the mechanical elastic effects. This parameter will vary

between the different cases presented, as it is a parameter of the Abkarian, Faivre

& Viallat model through the surface shear modulus Es.

• The viscosity ratio:

λ =
µint

µext
, (3.79)

which is the ratio of the dynamic viscosity between the internal and external fluids.

It will also be varied between the different cases since it is a parameter of all the

models derived previously.

The values and ranges of all the parameters is summarized in table 3.1.
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Particle parameters

Axes ratio a1/a2 a1/a2 = 2
Axes ratio a2/a3 a2/a3 = 0.5

Deformation parameter D =
a2

1−a2
2

a2
1+a2

2
D = 0.6

Membrane surface Σ = 5.38× 10−13 m2

Capillary number Ca ∈ [0.001; 5]
Viscosity ratio λ ∈ [1; 100]
Initial angle θ0 = 45◦

Table 3.1: Models parameters: Particle and flow.

.

a1

a2

µext

µint

x1

x2

x̂1

x̂2

θinit

Figure 3.2: Schematic of an ellipsoidal membrane suspended in a fluid of viscosity µext,
with a1

a2
= 2 as used for the following behavior study.

These parameters will be used for the Keller & Skalak model as well as the Abkarian,

Faivre & Viallat model and the resulting behavior will be displayed in the next section.

In all cases, the models are seen to predict the expected equilibrium state at θ = 0◦.

The aim of this study is to understand the trends of both models in an elongational

flow for varying capillary number and viscosity ratios. In all the predictions, whatever

the model used, the ellipsoid angle decreases from its initial value and tends to 0. The

different models and the value of the parameters changes the dynamics of the inclination

angle as detailed in the next section. Given the typical behavior of the angle over time

(Eq. 3.71), results will be presented in terms of tan(θ).

3.2.2 Effect of the capillary number

In this section, the viscosity ratio λ is kept constant at λ = 1 for all cases. The capillary

number is then varied between 0.001 and 0.1. Figure 3.3 shows that the Abkarian,

Faivre & Viallat model converges to the solid regime of Jeffery’s theory for decreasing

capillary number. In the case of low capillary number, the surface shear modulus Es

value is high. The elastic contribution to the Abkarian, Faivre & Viallat model, the
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second term of Eq. (3.73), dominates the term in sin 2θ. For low capillary number limit

(denoted by lc), ω̇lc has the following limit:

ω̇lc = Alc sin 2ωlc, (3.80)

with,

Alc =
f1

2(f2 − λf1)

EsΣ

µV
, (3.81)

which can be solved analytically, as previously presented for θ:

ωlc = arctan(tan(ω0)e2Alct). (3.82)

Since Alc is negative, ω which corresponds to the phase angle of membrane elements

will converge towards 0. The dependence of Alc on the surface shear modulus Es shows

that for decreasing capillary number, ω will vanish faster and faster. As ω = 0 is an

equilibrium state of Eq. (3.80), ω̇, the tank-treading rate, also drops to 0. Thus, the

initial dynamics of the particle will be described by the complete AFV model but as

soon as ω̇ = 0, the resulting dynamics is perfectly described by Jeffery’s theory since

Eq. (3.72) becomes Eq. (3.77) in this case. The time for which the dynamics of the

particle are described by the complete AFV model, before matching the rigid case, can

be estimated using the associated characteristic time scale:

τlc ∼
1

Alc
=

2µV (f2 − λf1)

f1EsΣ
, (3.83)

which interestingly does not depend on the extensional rate κ and only compares viscous

and elastic effects. This time is a viscoelastic time characterizing the delay between the

initial situation and the time where the rigid behavior is obtained.
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Figure 3.3: Comparison of the tangent of the orientation of the Keller & Skalak model
(K&S) and the Abkarian, Faivre & Viallat model (AFV) for different capillary numbers,
for λ = 1 versus the non-dimensional time.

The Keller & Skalak model is plotted only for λ = 1 as it does not depend on the

capillary number. In the high capillary number limit, the elastic power stored by the

membrane in the AFV model is small, especially at the beginning of the simulation.

Thus, the results of the AFV model matches the ones from the K&S model when Ca ≫ 1.
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Figure 3.4: Comparison of the tank-treading frequency ω̇ of the Keller & Skalak model
(K&S) and the Abkarian, Faivre & Viallat model (AFV) for different capillary numbers,
for λ = 1 versus the non-dimensional time.

Fig. 3.4 shows the instantaneous tank-treading frequency for the Keller & Skalak

and the Abkarian, Faivre & Viallat models. In the case of the Keller & Skalak model,

the value of ω̇ will not be affected by the capillary number. It is interesting to note

that the tank-treading frequency is seen to be only positive for the K&S model, and

vanishes for longer times. This implies that the tank-treading motion will be faster

at the beginning of the reorientation of the cell and will slow down rapidly during the

motion, keeping the same direction at all times until a full stop when the orientation is

completed. For the Abkarian, Faivre & Viallat model, ω̇ does depend on the capillary

number. Since the factor in front of Eq. (3.73) is negative, higher values of Es (lower

capillary numbers) will result in a quicker decrease of the value of ω̇ over time. This

conveniently confirms the behavior witnessed in Fig. 3.3 where the AFV model converges

to Jeffery’s theory, as if the value of ω̇ is 0, the resulting model is found to be the same

as Jeffery’s (Eq. (3.77)). The value of ω̇ for κt = 0 is the same for all cases, it does

not depend on the capillary number. The value of ω̇ converges towards 0 for the AFV

model because the elastic energy stored by the membrane is released to the flow during

the reorientation, which is why negative values of ω̇ are present. The reorientation

process is slowed down by negative values of ω̇. The integration of ω̇ shows the elastic

energy stored (for positive values of ω̇) and released (for negative values of ω̇). These

two contributions should be equal. The less elastic energy is stored in the membrane,

the less time it takes to release it with lower intensity.
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3.2.3 Effect of the viscosity ratio

In this section, the viscosity ratio λ is varied in the range presented in Table 3.1 in

the Keller & Skalak and Abkarian, Faivre & Viallat models while the capillary number

is kept constant at Ca = 5. Figure 3.5 shows the tangent of the orientation of the

particle with non-dimensional time. It is first seen that with increasing viscosity ratio,

the models will converge towards Jeffery’s theory, as expected. The second obvious

observation is that the K&S model and the AFV model agree at small times, before the

elasticity gets important in the AFV model.
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Figure 3.5: Comparison of the tangent of the orientation of the Keller & Skalak model
(K&S) and the Abkarian, Faivre & Viallat model (AFV) for different viscosity ratios,
for Ca = 5 versus the non-dimensional time.

Both models depend on λ, as seen in Eq. (3.68) and (3.73). These equations show

that for increasing λ, the resulting equations for θ̇ of both models will become the same,

namely Eq. (3.77) of Jeffery’s theory. A striking results is the effect of λ on the speed

of the reorientation. Due to increasing dissipation with λ, the particle reorients less

rapidly when λ increases. The dependence on λ is less significant on the results of the

AFV model for lower capillary numbers, as the elastic contribution dominates the ω

and ω̇ terms.

Figure 3.6 shows the value of the tank-treading frequency ω̇ for varying viscosity

ratio λ. It is observed that once again, the Keller & Skalak model only shows positive

values of ω̇ as opposed to the positive and negative ones of the Abkarian, Faivre &

Viallat model. This corresponds to the membrane rotating only in one direction for

the K&S model, and changing direction over time for the Abkarian, Faivre & Viallat



3.2. MODELS BEHAVIOR IN THE CASE OF A PLANAR ELONGATIONAL

FLOW 85

model. It is seen that the greater the viscosity ratio λ, the quicker the vanishing of ω̇.

As explained previously, if the tank-treading frequency ω̇ is 0, the regime of Jeffery’s

theory is retrieved, since the contribution of the velocity of the membrane in the K&S

and AFV models is negligible in front of viscous effects. This behavior for ω̇ is easily

found analytically in Eq. (3.68) and (3.73), where it is seen to vanish in the case of the

AFV model and resulting in Jeffery’s theory in both cases. It is also seen that ω̇ for

κt = 0 strongly depends on the value of λ. For lower values of λ, the membrane is seen

to reorient and spin rapidly. In the AFV model, an important amount of elastic energy

is thus stored which strongly slows down θ̇ upon releasing. This is why the curve for

λ = 1 in Fig. 3.5 rapidly shows an almost flat trend.

λ = 1
λ = 3
λ = 10
λ = 100
λ = 1
λ = 3
λ = 10
λ = 100

ω̇ κ

κtκt

Figure 3.6: Comparison of the tank-treading frequency ω̇ of the Keller & Skalak model
(K&S) and the Abkarian, Faivre & Viallat model (AFV) for different viscosity ratios,
for Ca = 5 versus the non-dimensional time.

The derivation of the Keller & Skalak model and the addition of Abkarian, Faivre &

Viallat in the context of a 2D and 3D hyperbolic flow shows that the resulting model is

different both from the one derived by Keller et al. [104] and from the one in Abkarian

et al. [3]. The case of the elongational flow is simpler, the particles reorienting sys-

tematically in the direction of the elongation. The models show the expected behavior,

correctly predicting the equilibrium state at θ = 0◦ (the particle is aligned with the

direction of extension). It is seen that they also converge towards Jeffery’s theory for

high values of the viscosity ratio λ. For increasing capillary number, the AFV model

is seen to converge towards Jeffery’s theory again, where the elastic contribution of the

membrane will dominate the membrane velocity contribution. In conclusion, the AFV
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model is found to converge towards Jeffery’s theory for vanishing capillary number or

high viscosity ratio. The K&S model is found to have the same behavior in the case of

high viscosity ratio. The AFV model is found to converge towards the K&S model for

high values of the capillary number. Also, the K&S model is found to reorient faster

than the AFV model, as the membrane stores energy as it rotates and releases it by

slowing down the reorientation. Finally, the viscosity ratio is seen to have an important

influence on the results, θ̇ will be lower for higher values of the viscosity ratio, which

corresponds to a slower reorientation.

In the next section, these analytical models will be used and compared against the

orientation of a red blood cell during its passage inside the micro-orifice.
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This section investigates the dynamics of red blood cells within a blood analyzer

geometry using numerical simulations. Results about the deformation, trajectory and

orientation of cells while they travel through the device are shown and compared to

some of the analytical models presented in Chapter 3. First, the numerical configu-

rations are presented: the red blood cell geometry and the fluid domain, the blood

analyzer geometry. Then, the simulation setup along with the associated results about

the orientation of centered red blood cells are detailed. Finally, the behavior of the cells

is closely analyzed.
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4.1 Numerical configuration

4.1.1 Red blood cell

A single red blood cell is used for all simulations; its shape is a discocyte as presented

on Fig. 4.1.

Figure 4.1: Shape of the red blood cell used for the simulations. Whole red blood cell
(left), half red blood cell (right).

This red blood cell is defined by various parameters as presented in Table 4.1. These

parameters are close to physiological parameters experimentally measured and remain

identical for all cases performed.

Cell and membrane geometry

Red cell area ARBC = 133.4 µm2

Red cell volume VRBC = 93.5 µm3

Length scale RRBC = 2.81 µm
Mechanical parameters

Model mechanical law Skalak
Shear modulus Es = 5.7× 10−6 N.m−1

Area dilation modulus Ea = 5.7× 10−1 N.m−1

Bending modulus Eb = 1.7× 10−19 N.m
Others

Viscosity ratio λ = 6
Interior viscosity νint = 6× 10−6 m2s−1

Exterior viscosity νint = 10−6 m2s−1

Membrane viscosity νmemb = 0
Conductivity σm = 2.27× 10−12 S.m−1

Membrane surface elements Nmemb = 5120 faces

Table 4.1: Summary of the chosen red blood cell parameters

.

RRBC is the characteristic length scale of the red blood cell (radius of the sphere of
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same volume) and is defined as

RRBC =

(

3VRBC

4π

)1/3

. (4.1)

It is of interest to note that this discocyte shape for the red blood cell is the result of

the deflation simulation presented in Section 2.8.2, which means that it is a pre-stressed

equilibrium state of the cell.

4.1.2 Configuration

The simulation of the flow of red blood cells inside the blood analyzer is done using

the numerical method described in Chapter 2. The blood analyzer geometry has been

provided by Horiba Medical, it is shown in Fig. 4.2.

ZY

X

Figure 4.2: Picture of the blood analyzer whole geometry. (A) is the sample injector,
(B) and (C) are inlets for the sheath fluid and (D) is the outlet of the system. The
micro-orifice where the counting/sizing takes place, is not visible in this view.

In figure 4.3, a slice of the whole geometry is shown. It is about 2.5 cm long,

and 5 mm in diameter. The blood samples are injected with a flowrate of Qsample =

0.51 µL.s−1 in (A) of Fig. 4.3. The sheath flow imposed on (B) is used to hydrofocalize

the blood sample, as presented in Section 1.3.3. The sheath flow imposed at (C) is

used to evacuate the sample rapidly after the measurement is performed in the micro-

orifice. These sheath flows are injected with flow rates of Qsh1 = 8.38 µL.s−1 and

Qsh2 = 75.4 µL.s−1 on (B) and (C) respectively.
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Anode Cathode

1 mm

Figure 4.3: Slice of the full geometry. (A) is the sample injector, (B) and (C) are inlets
for the sheath fluid and (D) is the outlet of the system. The red circle is centered on
the micro-orifice.

Bulk velocities are calculated from these flow rates. We find Usample = 1.8 ×
10−3 m.s−1, Ush1 = 10−2 m.s−1 and Ush2 = 1.5× 10−1 m.s−1. The micro-orifice where

the measurement is performed is a cylindrical region of diameter 2R = 50 µm and

length l = 65 µm. The curvature radius of the enter of the entrance of the orifice is

Rc = 15 µm.

l = 2.6R

R

Rc

zf = 2.6ROCenterline

Figure 4.4: Slice of the micro-orifice. point O is the entrance of the orifice on the
centerline, chosen as the origin of the z coordinate. zf is the exit of the orifice on the
centerline.

The resulting maximum velocity inside the orifice is about U = 7 m.s−1. The bulk

Reynolds number in the micro-orifice is then:

Re =
2UR

νext
≈ 350. (4.2)
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In the same manner, the Reynolds number inside the blood sample injection tube (Res)

and in the region where the blood sample and sheath flow meet (Rem) can be defined.

The resulting Reynolds number are Res ∼ 1 and Rem ∼ 5. The Reynolds number

near the sheath fluid injection (B) is ReB ∼ 10. The geometry is discretized using an

unstructured mesh of approximately 14 million elements, which is more refined around

the micro-orifice. Inlets conditions are imposed on (A), (B) and (C), and an outlet

condition is imposed on (D). The physical time simulated in the full geometry presented

here is of a few microseconds. These values of the Reynolds numbers in the sample

injection tube and the meeting region cause the flow to establish rapidly; even the

sheath flow is seen to quickly converge to its axi-symmetric profile with a local injection

in (B) (not shown). The value of the Reynolds number in the micro-orifice explains the

formation of a jet flow downstream of the micro-orifice, as observed in Fig. 4.5.

Figure 4.5: Fluid flow close to the blood analyzer micro-orifice.

Figure 4.6 shows the pressure field inside the micro-orifice. Since the value of the

pressure far from this region is constant, the overall pressure drop is around ∆P =

27 000 Pa in the system.
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Figure 4.6: Pressure field (Pa) inside the micro-orifice. Pressure is defned up to an
arbitray additive constant.

Figure 4.7 shows the particle acceleration ∂uz

∂z along the main axis of the blood

analyzer. It illustrates the large acceleration that the red blood cells undergo while

traveling through the micro-orifice. The position along the main axis is made non-

dimensional using the radius of the micro-orifice, z = 0 (point O in Fig. 4.4) being the

entrance of the orifice. It is seen that the red blood cells are subjected to a strong

acceleration and are expected to have an interesting behavior in the neighborhood of

the micro-orifice, in terms of deformation (notably elongation) and trajectory.
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Figure 4.7: Axial gradient of the axial component of the velocity before and inside the
orifice on the centerline.

Figure 4.8 shows the streamlines inside the blood analyzer, when computed from

the exit of the sample injection tube. It gives information about the type of trajectories

the red blood cells will most likely have, assuming that the red blood cells follow the

streamlines in this region. Figure 4.9 shows a close-up of the streamlines inside the

micro-orifice and reveals that the sheath flows does focus the red blood cells close to

the micro-orifice center axis.

Figure 4.8: Streamlines from the blood sample injection tube exit to the micro-orifice.

A local capillary number associated to the red blood cell area dialation modulus can

be computed. It is based on the local velocity gradient along the blood analyzer main

axis, denoted by k, and a red blood cell area dilation modulus Ea:

Caa =
µextkRRBC

Ea
, (4.3)
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Figure 4.9: Streamlines in the micro-orifice.

with RRBC the characteristic length of the red blood cell, defined as,

RRBC =

(

3VRBC

4π

)1/3

. (4.4)

The field of the capillary number in the micro-orifice is shown on figure 4.10. In the

region where red blood cells are present, Caa reaches 0.5 which is a relatively high value,

given that it is based on Ea. Thus, small area changes may be present. The value of

the capillary number based on the shear modulus would be C = 100000 times larger;

significant deformations are thus be expected.

Figure 4.10: Field of local capillary number inside the blood analyzer, in the micro-
orifice area. The extreme streamlines of Fig. 4.8 are reported to visualize the area
where red blood cells are most probably found.
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The whole configuration is computationally costly and will not be used for the nu-

merical simulations of the red blood cells in the blood analyzer as it would increase the

time of computation dramatically. A reduced configuration with smaller computational

domain is thus desirable.

The axial gradient of the axial component of the velocity over the centerline of the

whole configuration is shown in Fig. 4.11 and 4.12. The former, which presents the axial

gradient of the axial component of the velocity on the centerline between the exit of the

injection tube and the coordinate z/R = −25, shows that the magnitude of the velocity

gradient in the orifice is about 10000 greater than the one experienced by red blood

cells after the exit of the injection tube. It is seen that the velocity gradient starts by

being negative and increases. It is caused by the fact that the flow of the injection tube

meets the sheath flow in this region.

Fig. 4.12 shows the axial gradient of the axial component of the velocity on the center-

line between the coordinate z/R = −25 and the coordinate of the deposition (z/R = 1)

as it will be presented later in this chapter. It is seen that the velocity gradient does

not increase significantly for most of the length traveled by the red blood cells. The

influence of the velocity gradient could have more important effects from z/R = −10.

Even if the dynamics of the red blood cells from z/R = −10 to z/R = −1 would

be interesting to investigate, the time of transit in this section can be approximated to

be about 3 ms, which is 100 times greater than the time spent in the region considered

in this chapter (from z/R = −1 to z/R = 2.6). It was thus decided to reduce the

computational domain even further, as detailed in section 4.1.3.
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Figure 4.11: Axial gradient of the axial component of the velocity far from the entrance
the orifice on the centerline. z/R ∈ [−125;−25]
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Figure 4.12: Axial gradient of the axial component of the velocity near deposition of
the red blood cell, before the orifice on the centerline. z/R ∈ [−25;−1]
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4.1.3 Reduced configuration

As previously stated, a reduced configuration is used in order to reduce computational

cost and because the velocity field is virtually homogeneous in most of the blood ana-

lyzer (see Fig. 4.3 and above). It is extracted from the whole system. The flow inside

the whole blood analyzer is first computed and converged in the absence of cells, as

shown in the previous section. The resulting velocity field is then interpolated on a

reduced configuration.

Figure 4.13: Crossed-section of the reduced configuration shown over the full configu-
ration. The geometry and flow are axi-symmetric. The indicated boundaries are set
as flow inlets. A velocity profile is imposed on these boundaries at all times during
the simulations, the boundary on the right is set to be an oulet boundary condition.
The velocity field in the reduced configuration is interpolated from the velocity field
computed in the full configuration.

The mesh contains around 8 million tetrahedral elements, the region where the red

blood cells are expected to travel through the system being more refined (see Fig. 4.9).

The mesh inside this refined region is fixed to RRBC

dx = 6. The reduced configuration

and its velocity field, centered on the aperture, are presented on Fig. 4.14.
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Figure 4.14: (a) Reduced configuration extracted from the whole blood analyzer. (b)
Fluid flow inside the reduced configuration.

The velocity field from a reduced domain simulation in the absence of a particle

is compared to the one found in the full configuration in Fig 4.15. The maximum

difference between the two profiles is found to be of 5%. As we are more interested by

the qualitative behavior than by precise numbers, such a difference is considered to be

acceptable. This reduced configuration will be used in all the following simulations.

Longitudinal position (z/R)

u
z

(m
/s

)

Figure 4.15: Comparison of the z-component of the velocity on the main axis of the full
and reduced configurations.
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4.1.4 Initial state of the red blood cell

The initial state of the red blood cells arriving near the orifice is actually unknown. In

order to study the dynamics of the red blood cells in the orifice, a parametric study is

performed, as a function of the initial position and orientation of the cell. The cell will

be supposed to be undeformed where it is deposited in the flow. The initial position

and orientation of the red blood cell in the numerical domain is usually defined by six

variables: three coordinates (x0, y0, z0) for the initial position and three angles for the

orientation, (θ0, ϕ0, ψ0). As the initial shape of the red blood cell is axisymmetric (see

Fig. 4.1) only two orientation angles are necessary, namely θ0 and ϕ0. As the geometry

and the flow are axisymmetric, variables x0 and y0 can be gathered using the distance to

the axis r =
√

x2
0 + y2

0. Without loss of generality, the red blood cells will be deposited

in the y = 0 plane. The initial position of the red blood cell in the numerical domain is

first defined by its position z0 along the blood analyzer axis (z-axis), which is fixed for

all the simulations presented:

z0 = −R, (4.5)

with R = 25 µm, the radius of the micro-orifice. This position was chosen so that

most of the acceleration phase is computed at a relatively reduced computational cost.

This initial coordinate being fixed, three independent parameters are still necessary to

describe the red blood cell position and orientation:

• r, the initial distance from the z-axis, taken along the x-axis.

• θ0 and ϕ0, two angles used to define the red blood cell orientation.

Due to the hydrofocalization, the red blood cells travel will be restricted to the domain

bounded by the streamlines, as seen in Fig. 4.9. The position r is found to take all the

possible values inside the domain bounded by the streamlines in Fig. 4.16, since the

other half would generate redundant results. The resulting range for r is:

• r ∈ [0; 15] µm.

In order to define the angles θ and φ, a local frame with respect to the streamlines has

to be introduced. These axes are (see Fig 4.18):

• ~zstream, which is aligned with the streamline for the current position r of the cell.

• ~ystream = ~y, which is defined as the vector normal to the plane presented in

Fig. 4.17. It matches the vector of the canonical basis.

• ~xstream, the axis completing the direct orthonormal basis formed with ~ystream.
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Figure 4.16: Reduced configuration around the aperture with streamlines and position
marks.

~zstream

~xstream

~ystream

~zstream

~xstream

~ystream

Figure 4.17: Definition of axes ~xstream, ~ystream, ~zstream in the reduced configuration.

A local frame for the red blood cell is also introduced. Figure 4.18a shows the

~xRBC and ~zRBC axes which are centered on the center of mass of the red blood cell

and aligned with the long and small radii of the cell, respectively. These two axes are

chosen to be in the (~xstream, ~zstream) plane, so that ~yRBC = ~ystream and completes the

direct (~xRBC , ~yRBC , ~zRBC) orthonormal basis.
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Figure 4.18: Representation of the red blood cell local frame and definition of θ. (a)
RBC local frame, (b) θ > 0, (c) θ < 0.

As presented on Fig. 4.18b and 4.18c, the angle θ is defined as,

cos θ = ~zRBC . ~zstream. (4.6)

The second angle, ϕ, is the amount of rotation around ~zstream. To define this angle, it

proves useful to introduce the projection ~xp of ~xRBC on the plane formed by ~xstream

and ~ystream = ~y, which writes,

~xp = (~xRBC . ~xstream)~xstream + (~xRBC . ~ystream)~ystream. (4.7)

Thus, as seen on Fig. 4.19, the angle ϕ is defined as,

cosϕ = ~xp . ~xstream. (4.8)

Figure 4.19: Representation of the red blood cell local frame and definition of θ and ϕ.

Both θ0 and ϕ0 should vary inside their own ranges defined by considering the

geometrical symmetries of the blood analyzer itself, as well as the ones of the red blood

cell. The resulting ranges are:

• θ0 ∈ [−90◦; 90◦].

• ϕ0 ∈ [0◦; 90◦].
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Note that when the red blood cell is located on the z-axis (r = 0 µm), φ0 is no longer

useful and the range of θ0 can be reduced to [0◦; 90◦] for symmetry reasons. This

particular configuration will be studied in details in the remaining of this chapter. The

cases where r 6= 0 will be considered in Chapter 5.

4.2 Results on the centerline

4.2.1 Performed cases

As a first step, the range of explored initial states is restricted in this chapter, decreasing

the number of needed variables to uniquely define a single case. The initial position

of the red blood cell is fixed on the centerline (r = 0 µm). The performed simulations

consider a centered red blood cell, with the longitudinal position still imposed as z0 =

−R:

(x0 = 0, y0 = 0, z0 = −R), (4.9)

In this case (r = 0 µm), ~zstream is aligned with ~z, the main axis of the blood analyzer.

The initial orientation of the red blood cell is thus defined only by θ0, as ϕ0 only

describes redundant cases due to the cylindrical symmetry of the geometry. It is thus

fixed as ϕ0 = 0◦ so that ~yRBC = ~ystream for any value of θ0. The angle θ0 will thus vary

inside a range defined by considering the geometrical symmetries of the blood analyzer

and the red blood cell. The resulting range is:

• θ0 ∈ [0◦; 90◦].

In this section, several cases are presented. The value of θ0 will change from θ0 = 0◦ to

θ0 = 90◦ while the initial position (x0 = 0, y0 = 0, z0 = −R) remains unchanged.

4.2.2 General dynamics

The focus is set on the time evolutions of the longitudinal position and the orientation of

the cells. General dynamics and behaviors are extracted from the results in an attempt

to better understand the dynamics of the cells.

Time evolution of the longitudinal position of the cells

The results are extracted from two simulations where the initial orientation of the cell

θ0 is set at θ0 = 0◦ (long axis of the cell perpendicular to the direction of the flow) and

θ0 = 90◦ (long axis aligned with the direction of the flow). The results are shown in

Fig. 4.20.

The time evolution of the longitudinal position of the cell is seen to be almost

perfectly identical for the two cells of very different orientation. More interestingly, the

time evolution of the longitudinal position of a tracer convected by the velocity field
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Figure 4.20: Time evolution of the longitudinal position (z/R) for red blood cell with
an initial orientation of θ0 = 0◦ and θ0 = 90◦. The time evolution of the longitudinal of
a tracer deposited in the velocity field is also plotted. The dashed lines represent the
coordinate of the exit of the orifice and the corresponding time at which the red blood
cell center of mass reaches this coordinate.

is reported on Fig. 4.20 and also shows to be identical. This shows that the initial

orientation of the cell, the deformation and rotations it undergoes or the presence of

the cell itself during the travel in the orifice has little to no effect on the trajectory of

its center of mass. In addition, it allows the measurement of the average time of transit

in the micro-orifice τt which is found to be: τt = 25.9 µs.

Time evolution of the orientation of the cells

The deformation states of the red blood cells along their pathlines are presented on

Fig. 4.21 for four different initial orientations (θ0 = 0◦, 30◦, 60◦, 90◦).

Figure 4.21b and 4.21c clearly show that the velocity field in the micro-orifice is

reorienting the red blood cell towards the inclination θ0 = 90◦ (see Fig. 4.21d). The

first case, with θ0 = 0◦ is not reoriented because of the symmetry of the flow and of

the red blood cell. In such a case, the cell slightly elongates in the streamwise direction

and contracts in the other directions due to the action of the flow. Note that such a

symmetric case can be viewed as a pathological case, probably never observed in reality.

The simulations have been repeated for more values of θ0. The orientation of the

cell with respect to the longitudinal axis is plotted on Fig. 4.22. This figure shows
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a) b)

c) d)

Figure 4.21: Successive positions of the red blood cell with initial orientations: a)
θ0 = 0◦, b) θ0 = 30◦, c) θ0 = 60◦, d) θ0 = 90◦.

that for all values of θ0, a reorientation of the cell is observed. Depending on its ini-

tial inclination, the final orientation of the cell will be more or less close to 90◦. The

performed cases have been labeled as RX on Fig. 4.22 and 4.23, with X the value for θ0.

This reorientation phenomenon is the result of the interaction between the fluid

(hydrofocalization and resulting hydrodynamic forces) and the cell mechanics: mem-

brane resistance to deformation and viscosity difference. It is investigated in details in

Section 4.2.4 using some of analytical models developed in Chapter 3.
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Figure 4.22: Instantaneous orientation versus position along the axis of the blood ana-
lyzer, for different initial orientations. The cases are labeled as RX, with X the value
for θ0.
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Figure 4.23: Instantaneous orientation versus time, for different initial orientations. The
cases are labeled as RX, with X the value for θ0.
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4.2.3 Deformation and elongation

The deformation and elongation state of the red blood cell for θ0 = 90◦ is investigated

in this section. In this case, the axis of the red blood cell coincide with the canonical

axes of the geometry so that: ~xRBC = ~zstream, ~zRBC = ~xstream and ~yRBC = ~ystream.

First, the classical Taylor deformation parameter used in the linear shear flow test case

of Section 2.8.4 is introduced again:

D =
A−B
A+B

, (4.10)

where A and B are the semi-axes of the ellipsoid that has the same tensor of the

moments of inertia as the red blood cell. In this chapter, three Taylor parameters are

defined, each of them corresponding to the deformation parameter in one plane. The

first one, Dxy, using the semi-axes of the ellipsoid in the x − y plane, which normal is

the blood analyzer main axis, the second one, Dxz, using the semi-axes of the ellipsoid

in the x − z plane, which is used to present the results throughout this thesis and the

third one, Dzy, the plane perpendicular to the latter plane, containing the main axis of

the blood analyzer, ~z. These planes are represented in Fig. 4.24, along with a red blood

cell orientated at θ0 = 90◦ and the associated deformation parameters.

~xstream

~ystream

~zstream

Dxy

Dzy

Dxz

Figure 4.24: Representation of the planes associated with Dxy, Dzy and Dxz, with a
red blood cell with θ0 = 90◦.

The results for the evolution of Dxy, Dzy and Dxz along the trajectory of a red blood

cell with θ0 = 90◦ are presented in Fig. 4.25.
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Figure 4.25: Taylor parameters versus longitudinal position in the micro-orifice, for
θ0 = 90◦.

Fig. 4.25 shows that the red blood cell deforms in all planes. It can be related to

Fig 4.21d, where the red blood cells shows an elongation along the z-axis while under-

going compression in all directions in the x − y plane, correctly corresponding to an

increase in Dxz and Dyz and a decrease in Dxy. Dzy shows a initial value close to 0

because of the red blood cell symmetry. All of the deformation parameters show a slow

decrease to an asymptotic value after the first part of the orifice (z/R > 1.5), which can

be seen as a relaxation of the red blood cell to an asymptotic deformation state, after

being subjected to the velocity gradient at the enter of the orifice (see Fig. 4.15). This

suggests that when a red blood cell is deposited upstream from the current location

(z0 = −R), it could converge to this asymptotic deformation state as well. Dzy and Dxz

reach close values in the perforation while Dxy gets small: the red blood cell reaches an

elongated quasi-axisymmetric shape.

In Fig. 4.26, the Taylor parameters of a red blood cell with an initial orientation of

θ0 = 90◦ deposited at z/R = −1.8 is plotted. It shows that the Taylor parameters keep

the same trend as in the case of a later deposition as in Fig. 4.25. Some differences

in the values of the parameters are to be noted: Dxz reaches a lower value (the same

as Dzy) than in the case of a later deposition. This indicates that the red blood cells

reaches a shape that is almost perfectly axi-symmetric, even more than in the case of a

late deposition, probably because the red blood cell is subjected to a velocity gradient

in the direction of the flow for a longer time. Dxy reaches a smaller value than in the

earlier case, and is seen to hit the value of Dxy = 0, indicating that the cell is of circular
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shape when projected in the xy-plane. In this case again, the Taylor parameters reach

an asymptotic value after they crossed the entrance of the orifice.
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Figure 4.26: Taylor parameters versus longitudinal position in the micro-orifice, for
θ0 = 90◦and a deposition coordinate of z/R = −1.8.
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Figure 4.27: Elongation versus longitudinal position in the micro-orifice, for θ0 = 90◦.

Figure 4.27 shows the elongation in each direction. It is easy to see that the elon-
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gation along the z-axis is correctly observed here, with a maximum elongation of less

than 2. Along the y-axis (perpendicular to the plane used in all figures), a decrease of

the elongation is clearly seen, with this axis shrinking to about 40% of its initial length.

Along the x-axis, no strong variation is observed. This can be justified by the fact that

along this axis, the red blood cell already has its smaller length (the dimples of the red

blood cell), and due to the incompressibility of the cell and its membrane mechanics,

most of the compression will act along the y-axis.
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Figure 4.28: Elongation versus longitudinal position in the micro-orifice, for θ0 = 90◦.

Again, a red blood cell with an initial orientation of θ0 = 90◦ is deposited at

z/R = −1.8. The results in terms of elongation are plotted in Fig. 4.28. The trend of

the elongation is again conserved, even though the dynamics are different, with more

important variations in the elongation over time. Nevertheless, the value of the elon-

gation at the end of the orifice is found to be identical with a red blood cell deposited

at z/R = −1. This supports the fact that the red blood cells reaches an asymptotic

deformation state in the orifice which does not depend on the initial position of the cell

for z0 ≪ −1, thus justifying the size of the reduced computational domain used in this

study (Fig. 4.13).

4.2.4 Comparison with analytical models

In this section, the analytical models presented in Chapter 3 will be used to model the

orientation of the red blood cell along its travel through the micro-orifice. The three

models will be used: Jeffery’s theory [99], the Keller & Skalak model [104] and the
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Abkarian, Faivre & Viallat model [3] in the context of a 3D elongational flow. Each of

these models predicts the orientation of fixed-shape ellipsoids with different membrane

properties. They take as input parameters the shape of the particle and the velocity

gradient of the flow. Along their trajectories, red blood cells are subjected to a vary-

ing elongation rate. In order to reproduce this effect, the trajectory of the particles is

first calculated from the carrying flow and the local elongation rate is obtained. The

extensional rate κ is thus updated depending on the position of the cell. The value for

a1, a2 and a3 that correspond to the semi-axes of the ellipsoid in the analytical models

are set according to the initial value of the semi-axes of the ellipsoid of inertia that has

the same moments of inertia as the red blood cell. All the other parameters for the cell

(volume, membrane surface, etc.) are set equal to the simulations parameters. Note

that some attempts were made to update the shape parameters with simulation data,

without convincing improvements. The shape is thus fixed in the models.

The goal of this section is to be able to model the trend of the reorientation of the red

blood cells in the blood analyzer, and to determine if the previous models are accurate

enough to predict the reorientation phenomenon in detail. Note that the computations

do no verify the hypothesis of zero Reynolds number of all analytical models, as the

maximum particle Reynolds number is of the order of 1.0.

Results

The three models have been used to compute θ(z) for the cases with θ0 = 10◦, θ0 = 40◦

and θ0 = 70◦. Results are presented in Fig. 4.29, 4.30 and 4.31, respectively. It is seen

that the general trend of the reorientation is predicted in all cases. However, the details

of the phenomenon are not described: notably, for θ0 = 10◦, the models do not capture

the stabilization of the orientation seen in the simulation around z/R = 1.25−1.5, where

the models keep producing an increasing orientation. This stabilization is most likely

due to mechanical effects related to the shape deformation which are not accounted for

in the analytical models.
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Figure 4.29: Comparison of the instantaneous orientation of the cell from the
YALES2BIO simulation with the analytical models for θ0 = 10◦.

Figures 4.29, 4.30 and 4.31 show that the initial slope of the orientation is closer

to the numerical results as the initial orientation θ0 increases. This can be justified by

the fact that for higher values of θ0, the deformation is less significant at the beginning

of the simulation and thus, does not play an important role in the reorientation phe-

nomenon at small time scales.

It is also of interest to note that Jeffery’s theory is always found to underestimate

the reorientation more than the Keller & Skalak and Abkarian, Faivre & Viallat models

which is consistent with the parametric comparison of the models in Chapter 3. In

addition, the Keller & Skalak and Abkarian, Faivre & Viallat models show an almost

exactly similar behavior, which leads to think that the elastic contribution of the mem-

brane is not important for the reorientation in this case. This can be understood by

the fact that the red blood cell is subjected to a flow with high capillary numbers, thus

minimizing the elastic contribution to the model. The differences in reorientation be-

tween the Keller & Skalak or Abkarian, Faivre & Viallat models and Jeffery’s theory

are thus related to the consideration of the internal fluid.
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Figure 4.30: Comparison of the instantaneous orientation of the cell from the
YALES2BIO simulation with the analytical models for θ0 = 40◦.
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Figure 4.31: Comparison of the instantaneous orientation of the cell from the
YALES2BIO simulation with the analytical models for θ0 = 70◦.

These results suggest that the reorientation phenomenon depends on the viscosity

ratio between the inner and outer fluids, since the K&S and AFV models are found
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to predict more correctly the orientation. Such a statement will be examined in more

details in the next section. However, the elastic energy storage of the AFV model is not

found to play a role in the reorientation. In addition, some physical effect is obviously

absent from the analytical models, as all of them miss some features of the reorientation.

This effect is most likely the deformation of the cell, that will have a direct impact on

its orientation. Thus, unless an analytical model with deformable particles is developed,

performing numerical simulations of the kind presented here is crucial to get details on

the orientation of red blood cells in such a geometry and a flow.

4.2.5 Influence of the viscosity ratio

As presented in Table 4.1, the viscosity ratio of a healthy red blood cell is around 6,

which is the value that has been used in all simulations so far. In this section, the

influence of the viscosity ratio is studied in more details, independently of its industrial

relevance in this particular problem. The aim is to further understand the dynamics of

red blood cells in elongational flows. Jeffery’s theory is thus not considered anymore,

as it does not account for on the value of the viscosity ratio.

a) b) c) d)

Figure 4.32: Successive deformation states of the cell for different viscosity ratios, for
θ0 = 10◦. a) λ = 1, b) λ = 2.5, c) λ = 6 and d) λ = 10.

Additional simulations have been performed with different values for the viscosity

ratio. They show great impact of the value of this ratio on the dynamics of the orien-

tation of the red blood cell as well as on its deformations, as seen in Fig. 4.32 and 4.33.

It is seen that the higher the viscosity ratio, the smaller the reorientation. This effect

is more important for lower angles. This is not surprising since lower angles cases, red

blood cells will undergo an important compression in the x− y plane, in all directions

(perpendicular to the blood analyzer axis), resulting in greater deformation and thus
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contributing more importantly to the reorientation phenomenon as the orientation is

calculated from the tensor of the moments of inertia. Thus, if the viscosity ratio in-

creases, the deformation and reorientation of the red blood cells will be less pronounced.

The 3D Abkarian, Faivre & Viallat extension of Keller & Skalak’s model derived

for a hyperbolic flow in Chapter 3 is now used to model the orientation of the red

blood cell during its passage in the micro-orifice. The original Keller & Skalak model

is not used as it is close to the Abkarian, Faivre & Viallat model for all values of the

viscosity ratio λ considered. The results are presented for 3 values of the viscosity ratio:

λ = 1, 2.5, 6 and 10 with two initial orientations: θ0 = 10◦, 40◦ in Fig. 4.33, 4.34

and 4.35, respectively.
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Figure 4.33: Instantaneous orientation of the cell along its trajectory for different vis-
cosity ratios versus the longitudinal position in the blood analyzer, for θ0 = 10◦.

Figures 4.33, 4.34 and 4.35 show that the AFV model reproduces the dependence of

the results on the viscosity ratio: the higher the viscosity ratio, the higher the reorienta-

tion phenomenon. However, the case of θ0 = 10◦ is found not to show great agreement

for viscosity ratios different of λ = 6. This is due to the fact that the deformation gets

more important for low values of the viscosity ratio.
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Figure 4.34: Instantaneous orientation of the cell along its trajectory for different vis-
cosity ratios versus the longitudinal position in the blood analyzer, for θ0 = 40◦.
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Figure 4.35: Instantaneous orientation of the cell along its trajectory for different vis-
cosity ratios versus the longitudinal position in the blood analyzer, for θ0 = 40◦for
z/R ∈ [2; 2.5].

The deformations undergone by the red blood cell have an impact on the reorien-

tation process itself, but also on the measure of this orientation. As it was previously
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Figure 4.36: Pictures of the red blood cells extracted from numerical simulations, before
and after the instant of the bump on the orientation, for θ0 = 40◦ and λ = 1.

mentioned, the orientation is measured by means of the matrix of inertia and the bumps

on Fig 4.34, for λ = 1 at z ≃ 0.15R (and less significantly for λ = 2.5) show the de-

pendence of the orientation on the shape of the cell. Indeed, at the instant of these

bumps, the red blood cell dimples are seen to buckle as seen on Fig. 4.36. Aside from

this bump effect on orientation, the Abkarian & Viallat variation model is seen to be in

good agreement with the results for θ0 = 40◦ with different viscosity ratios. This is due

to the fact that for higher values of θ0, the deformation will most likely have less impact

on the orientation and will thus allow the model to capture its trend. This shows that

once this model has been adapted to strain flow, it is able to predict the trend of the

orientation of red blood cells in this type of flows, as long as deformation does not play

an important role in this process.
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This chapter presents the modeling of the electrical measurement of the volume of

red blood cells passing through a blood analyzer. In a blood analyzer, the Coulter effect

allows the measurement of the volume of cells. The insulating nature of the red blood

cells membrane creates a perturbation in the resistance of the system that varies as

they travel through the device. This perturbation, in the form of an electrical pulse,

is measured and its amplitude is directly related to the cell volume. The measure of

this amplitude allows the characterization of possible errors on the measurement of the

volume of red blood cell. In this chapter, a brief summary of the interaction of red blood

cells with electrical fields is first presented. Then, the numerical method is described.

Several test cases are used to assess the quality of the implementation of this method,

notably for the more extreme case of discontinuous conductivity. Finally, the method

is applied to the blood analyzer problem: the numerical framework and setup used to

perform the numerical simulation is first described, followed by a thorough description

of the post-processing procedure (namely fittings and a statistical approach) allowing

the extraction of meaningful data on the quality of the electrical measurement of the

volume of red blood cells in the blood analyzer.

5.1 Red blood cells interaction with electrical fields

Red blood cells are complex deformable particles that have been thoroughly described

from the mechanical point of view in Chapter 4. The interaction between red blood

cells and an electrical field is now considered. It can take different forms depending on

the nature of the current.

5.1.1 AC case

AC stands for alternating current, where the flow of electrical charges periodically

changes its direction. It is defined by its intensity and its frequency. This case may be

related to particle analyzers, discriminators and manipulators, where it is possible to

witness various phenomena such as electrorotation, dielectrophoresis and electropora-

tion [8, 9, 44, 45, 47, 197]. This is due to the dielectric nature of red blood cells in AC

electrical field, where the cell is almost an insulator while being able to be polarized.

Electrorotation Electrorotation is the rotational movement induced by a polarizing

electrical field. It may be caused by the interaction between the alternative electrical

field phase and the polarization of the cell [101]. It allows the measurement of vari-

ous properties of the cell, such as the conductivity and permittivity of the ’inside’ or

membrane of cells.

Dielectrophoresis Dielectrophoresis is a phenomenon that happens when a cell is

subjected to a non-uniform electrical field. It will cause a force to be applied to this cell:



5.2. NUMERICAL METHOD 119

it is polarized and the electric field is different on each pole thus creating a movement

whose direction and intensity are determined by the cell electrical characteristics [101].

Electroporation Electroporation is an interaction of an AC generated electrical field

with a cell membrane, particularly the lipid bi-layer. It consists of pores opening in the

lipid bi-layer. It can be used to introduce DNA inside cells for medical purposes, but

depending on the intensity of the electrical field applied, it can cause an irreversible

electroporation, compromising the cell viability [203].

5.1.2 DC case

DC stands for direct current, where the flow of electrical charges keeps the same direction

at all times. It is only defined by its intensity. In this case, red blood cells are considered

as pure insulators that cannot be polarized, thus no effect of the electrical field on the

cell has to be taken into account. This chapter is focused on the DC case and the red

blood cell will be considered as a pure insulating particle, as the DC context is used in

the actual configuration of the blood analyzer designed by Horiba Medical.

5.2 Numerical method

The numerical method chosen for the simulation of the electrical response of red blood

cells flowing in a blood analyzer is based on the electrostatic approximation. The con-

struction of the model equation is first shown, and its numerical resolution is presented.

This part of the work has been done in collaboration with M. Martins Afonso (post-

doctoral fellow at IMAG 2011-2013).

5.2.1 Modelling framework

Model equation

In order to model the electrical response of red blood cells flowing in a blood analyzer,

the electrostatic approximation is made. Indeed, the physical velocities encountered

in the system are several orders of magnitude smaller than the speed of light. In this

case, the electric field adjusts instantaneously to any change in the spatial configura-

tion. Also, any Doppler effect or two-way coupling between the electric field and the

hydrodynamic or magnetic ones are neglected, following [96]. This approximation al-

lows the computation of the dynamics of the cells to be performed separately from the

electrostatic computations, since the former is entirely governed by the fluid-structure

interaction treated in Chapter 4.

There are two relevant electric parameters in this framework:

• the static conductivity σ,

• the static relative dielectric constant ǫR.
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These two parameters vary in space and time, taking one of three distinct values de-

pending on the position considered: either inside the cell (cytoplasm), outside of the

cell (carrying fluid) or inside the membrane. These values can be smoothed using a

numerical interpolation in order to avoid discontinuities. This smoothing operation is

presented in the following part of this section.

The fourth of Maxwell’s equations (Ampère’s law) in a conductive medium writes:

∇× ~H = ~j + ∂t
~D, (5.1)

with ~H the magnetizing, ~j the free electric current density and ~D the electric displace-

ment. The divergence of Eq. (5.1) reads:

∇ · (~j + ∂t
~D) = 0. (5.2)

Two constitutive relations can be used in the case of a conductive medium. First, Ohm’s

law, which writes:
~j = σ ~E, (5.3)

with ~E the electrical field. The second relation holds for linear and isotropic media,

which is a reasonable assumption since it is the case for both the interior and exte-

rior fluids. See [149] for a discussion about the possible electric anisotropy of the cell

membrane. This relation reads:
~D = ǫ0ǫR ~E, (5.4)

where ǫ0 ≃ 8.85× 10−12 F.m−1 is the electric permittivity of vacuum. Using Eq. (5.3)

and (5.4) in Eq. (5.2), the following expression is obtained:

∇ · [σ ~E + ∂t(ǫ0ǫR ~E)] = 0. (5.5)

Note that Eq. (5.5) does not account for the magnetic field anymore. A consequence of

the electrostatic approximation is the irrotationality of the electrical field (because of

the Maxwell-Faraday equation), leading to the introduction of the electrical potential

V as,
~E = −∇V. (5.6)

Therefore, the following equation is easily obtained using Eq. (5.6) and Eq. (5.5):

∇ · [σ∇V + ǫ0∂t(ǫR∇V )] = 0. (5.7)

A summary of the dielectric parameters for all the different elements of the system is

presented in Table 5.1.
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Dielectric parameters

Component Conductivity (S.m−1) Permittivity (F.m−1)
External fluid 2.27 80
Cytoplasm 0.31 59
Membrane 1× 10−6 4.44

Table 5.1: Dielectric parameters in the system as provided by Horiba Medical and found
in Valero et al. [191].

Both liquids can thus be seen as excellent conductors and the membrane as an insu-

lator, as the conductivity and permittivity values in Table 5.1 suggest. The insulating

nature of the red cell membrane allows a simplifying assumption that will be used in the

electrostatic solver: the electrical field in the system will not interact with the interior

fluid (cytoplasm) of the red cell, since it is wrapped in the insulating membrane.

Considering the non-dimensional counterpart of Eq. (5.7) with respect to the time

(t = τf t
∗), it can be written:

∇ · [∇V +
ǫ0ǫR
τfσext

∂

∂t∗
∇V ] = 0. (5.8)

with τf the characteristic time scale associated to the flow. From Chapter 4, one can

extract the mean velocity inside the orifice (Umean = 3.5 m.s−1). The time τf needed

for a red blood cell to travel for a distance corresponding to its own size is thus of the

order of:

τf ∼ 10−6 s. (5.9)

In Eq. (5.8), both ∇V and ∂
∂t∗∇V are of the same magnitude. Thus, the term ǫ0ǫR

τf σext
will

dictate which terms dominates the other one. It can be seen as a ratio of characteristic

time scales:
ǫ0ǫR
τfσext

=
τelec

τf
, (5.10)

where τelec is the electrical time scale of the external medium, since it is the only medium

considered as previously justified by the insulating nature of the membrane. Using the

values provided by Horiba Medical, the external fluid electric time scale is found:

τelec = τexternal =
ǫ0ǫ

ext
R

σext
∼ 10−10 s. (5.11)

Eq. (5.11) shows that the electrical time scale is several orders of magnitude lower

than the time scale associated to the flow. It means that the electrical effects will

happen significantly faster than the displacement of the particle and thus allows the

simplification of Eq. (5.7) into:

∇ · [σ∇V ] = 0, (5.12)
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which is the equation that will be solved in the electrostatic simulations.

The boundary conditions at the interfaces between the different materials impose the

continuity of the tangential component of the electric field, resulting in,

Etint
= Etext , (5.13)

and a possible jump condition for the normal component of the electric-displacement

field due to the surface charge density Σ [79]:

Σ = Dnint
−Dnext = ǫRint

Enint
− ǫRextEnext . (5.14)

Another important condition is the conservation of charge at the interfaces. In general,

this gives rise to a transport equation for Σ, here interpreted as a space-time field defined

on the interface (see [185], [192], [122]). However, in the present study, following [196]

and [22], the normal component of the electric current is considered continuous:

jnint
= jnext ⇒ σintEnint

= σextEnext . (5.15)

5.2.2 Computational treatment

In reality, red blood cells show a conductivity field as presented in Fig. 5.1a, where the

conductivity inside the membrane is low and the cytoplasm is conducting with σcyto =

0.31 S.m−1 as recapitulated in Table 5.1. In the numerical simulations performed with

YALES2BIO, following the previously stated assumption from the insulating nature

of the membrane, the conductivity field σint inside the membrane is set to σint ∼
10−12 S.m−1 (arbitrarily small value to mimic the insulating nature of the membrane)

and is smoothed from the exterior value of σext = 2.27 S.m−1 through the membrane, as

seen in Fig. 5.1b and presented in the next section. This approximation corresponds to

σextEnext ≃ 0 in Eq. (5.15) because the conductivity in the membrane is low (σint ≪ 1

on the membrane).
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Figure 5.1: Schematic representation of the conductivity field σ. a) In an actual red
blood cell. b) For the YALES2BIO simulations.

In Fig. 5.2, the conductivity field σ in the blood analyzer is presented. The model

equation,

∇.(σ∇V ) = 0, (5.16)

is solved everywhere over the volume of the configuration. A discretization method of

second order based on the DGA [177] is used, along with the DPCG procedure [128] to

solve the linear system. Boundary conditions are imposed on the walls of the config-

uration: Dirichlet conditions for the electrodes with V = Velectrode, and homogeneous

Neumann conditions on the insulating walls with ∇V = ~0.

σext

σint

Insulating walls

CathodeAnode

Figure 5.2: Schematic representation of the conductivity field σ in the blood analyzer.

5.3 Validation test cases

This section aims at providing a set of test cases demonstrating the ability of the solver

to solve electrostatic problems relevant to the final application, through the comparison

of an analytically computed potential with its simulated counterpart using YALES2BIO.
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The setup uses a unique and simple geometry with appropriate boundaries, in order to

avoid numerical difficulties and to be able to extend this validation to higher dimen-

sions. This geometry is a domain enclosed by concentric spheres, with uniform Dirichlet

conditions on both the inner and outer boundaries and angle-independent effective con-

ductivity (see Fig. 5.3).

Figure 5.3: Schematic representation of the test case (slice of the 3D domain)

Analytically, the problem is one-dimensional, and the solution reads:

V (r) = K + C

∫

r(1−d)

σ(r)
dr (5.17)

with d = 2 or 3 the dimension, constants K and C depending on the values of the

potential on the internal and external boundaries, Vi and Vo, respectively. From the

numerical point of view, however, the problem is solved with an unstructured mesh, and

is thus multidimensional, as we do not take advantage of the symmetry of the problem

to adopt the mesh.

For all the following test cases, the geometry, as well as the potential on the internal

and external boundaries are fixed as follows:

• R = 0.19 m, with ri = 0.01 m and ro = 0.2 m.

• Vi = V (ri) = −0.1 V and Vo = V (ro) = 1 V.

Only the expression for the conductivity σ(r) changes between the different test cases.

5.3.1 Numerical domain

The numerical domain used in all the following test cases is presented on Fig. 5.4
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Figure 5.4: Slice of the 3D numerical domain used in the test cases.

This mesh contains around 1 million tetrahedral elements, with approximately 20

edges around a perimeter of the inner sphere.

5.3.2 Constant conductivity

In this particular test case, the conductivity σ(r) is considered constant:

σ(r) = σ = 0.1 S.m−1. (5.18)

Using Eq. (5.17) with d = 3, the analytical profile is easily obtained:

Vana(r) = Kc −
Cc

σr
, (5.19)

with, Kc = Vi + ro

(

Vi−Vo

ri−ro

)

and Cc = σ
(

Vi−Vo

ri−ro

)

riro. The comparison between Vana and

the simulated potential is presented in Fig. 5.5.
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Figure 5.5: Comparison between the analytical profile and the simulated profile of the
potential, in the case of a constant conductivity σ.

A perfect agreement between the analytical and simulated potential profiles is ob-

tained.

5.3.3 Variable conductivty

In this test case, the conductivity σ(r) is considered variable, following:

σ(r) =
σ0

r
. (5.20)

Again, using Eq. (5.17) with d = 3, the analytical profile is easily obtained:

Vana(r) = Kv + Cv ln(
σ0

r
), (5.21)

with, Kv = Vi − (Vi − Vo) ln(σ0
ri

)
(

ln
(

ri

ro

))

−1
and Cv = (Vi − Vo)

(

ln
(

ri

ro

))

−1
. The

comparison between Vana and the simulated potential is presented in Fig. 5.6.
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Figure 5.6: Comparison between the analytical profile and the simulated profile of the
potential, in the case of a variable conductivity σ(r) = σ0

r .

It is seen that there is a good agreement between the analytical and simulated

potential profiles.
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5.4 Computation of the electrical potential in the

absence of cells

In this section, the numerical configuration and setup are presented in detail. The com-

putation of the electrical potential inside the full and reduced computational domains

are computed and described in the absence of cells.

5.4.1 Full configuration

The electrical potential inside the full configuration is computed using the electrostatic

solver presented in the previous section. The conductivity field inside the geometry is

constant, it corresponds to the conductivity of the external fluid when a cell is consid-

ered.

σext = 2.27 S.m−1. (5.22)

Mesh and boundary conditions

The full configuration is reminded in Fig. 5.7. The electrodes (anode and cathode) are

highlighted in the figure. A Dirichlet boundary condition is imposed on the electrodes:

Vcathode = 8 V, Vanode = 0 V. (5.23)

Homogeneous Neumann boundary conditions are imposed on all other walls, so that

∇V = 0. These Neumann boundary conditions correspond to the fact that the walls

are modeled as insulators.

Anode (0 V) Cathode (+8 V)

1 mm

Figure 5.7: Slice of the full geometry. The electrodes (anode and cathode) are used to
impose an electrical field in the micro-orifice.

The full configuration is meshed using an unstructured tetrahedral mesh of approxi-

mately 18 million elements, with a refined region in the orifice (R/dx ≃ 5 in the orifice).

It is presented in Fig. 5.8.
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Figure 5.8: Mesh of the full configuration.

Results

Using the electrostatic solver, the electrical potential and electrical field are found in

the full configuration. As seen in Fig. 5.9 and 5.10, most of the variation of these fields

happen in the micro-orifice.

Figure 5.9: Electrical potential in the full configuration. Most of the variation of the
field happens in the micro-orifice.

Figure 5.10: Electrical field in the full configuration. Most of the variation of the field
happens in the micro-orifice.

A zoom on the electrical potential and electrical field is presented in Fig. 5.11 to
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better represent their evolution in the orifice. The variation is seen to be large in the

micro-orifice and the electrical field is seen to display regions of higher intensity in the

corners of the orifice. It is a consequence of the hydrofocalization. The rather homoge-

neous character of the electrical potential and electrical field suggest that, analogously

to the reasoning of Chapter 4 about the velocity field, a reduced configuration can be

used to reduce the computation time.

Figure 5.11: Electrical potential and electrical field in the micro-orifice of the full con-
figuration. The higher values of the electrical field on the corners is a consequence of
the geometry of the blood analyzer.

The electrical current is computed in the full configuration by integrating the elec-

trical field on a section of the micro-orifice and multiplying it by the conductivity of the

fluid, which results in,

Ifull = 0.34 mA. (5.24)

This value is in agreement with the experimental measurements provided by Horiba

Medical and attests the quality of the computation.

5.4.2 Reduced configuration

In order to reduce computational costs due to the large variety of scales, a reduced

configuration is used in all simulations. It is presented in this section.

Mesh and boundary conditions

The reduced domain was extracted from the full configuration along iso-surfaces of elec-

trical potential in order to be able to simply apply uniform Dirichlet conditions on the

boundaries of the reduced domain (left and right boundaries of Fig. 5.12). Homogeneous

Neumann conditions are imposed on the other insulating walls. The uniform Dirichlet

conditions are set as:

Vleft = 0.3 V Vright = 7.742 V. (5.25)

It contains roughly 44 millions tetrahedral elements, which is reasonable since the

electrostatic simulations are much faster than the dynamical simulations, because of
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Figure 5.12: Reduced configuration (light grey) compared to the full configuration (dark
grey). White lines are iso-surfaces of the electrical potential intersections with the y-
normal plane.

the static nature of these simulations. The micro-orifice is more refined than in the full

configuration as it will be used to define the conductivity around the membrane and

thus needs a finer mesh. The mesh in the configuration and in the micro-orifice, as well

as the electrical potential is presented in Fig. 5.13

a) b)

Figure 5.13: a) Reduced configuration for the electrostatic simulation, with mesh. b)
Zoom on the orifice, with mesh.

Results

In the case of the reduced configuration, the electrical potential and electrical field have

the same variations as in the full configuration. Most of the variation happens in the

micro-orifice, as seen in Fig. 5.14.
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a) b)

Figure 5.14: a) Electrical potential in the reduced configuration b) Electrical field in
the reduced configuration.

As seen in Figure 5.12, the reduced configuration does not match perfectly the

iso-surfaces of electrical potential, which may be the source of error in calculations

performed with the reduced configuration. In order to quantify this error, Fig. 5.15

presents a comparison between the potential profiles on the centerline in the full and

reduced configurations.

Longitudinal position (R)

P
ot

en
ti
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l

(V
)

Orifice

Figure 5.15: Comparison potential profiles along the centerline of the main axis of the
full and reduced configurations.
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A good agreement between the potential profile along the centerline of the main

axis of the reduced and full configuration is found with a relative error of less than

0.1%, as presented on Fig. 5.15. Thus, all the electrostatic simulations performed in the

following sections use this reduced configuration.

The electrical current in the reduced configuration is found to be,

Ireduced = 0.34 mA. (5.26)

It is again in agreement with the value of 0.32 mA provided by Horiba Medical. These

preliminary results show that the numerical framework and reduced configuration are

suitable for the reproduction of the volume measurements in the blood analyzer.

5.5 Electrical pulse generated by the passage of a cell

In this section, the whole procedure followed in order to simulate the electrical pulse

created by the passage of a red blood cell in the blood analyzer is detailed. An overview

of the phenomenon and its characteristics are laid down in order to preview the approach

used in the next section.

5.5.1 Effect of the passage of a cell

As Fig. 5.11 shows, an almost homogeneous electrical field is imposed in the orifice.

The principle of the Coulter counter is that the passage of a cell disturbs the electrical

field. More precisely, when a red blood cell travels trough the domain, its insulating

nature locally disturbs the conductivity of the medium. This perturbation results in

a variation of the overall resistance of the domain, through a resistive pulse whose

amplitude is directly related to the cell volume.

In the following sections, the amplitude of the resistive pulse created by the passage of

the cell is denoted by ∆R, with:

∆R ∼ Vcell. (5.27)

5.5.2 Procedure of generation of the electrical pulse

The electrical pulse generated by the passage of a red blood cell is reconstructed from

the simulation of the dynamics of this red blood cell in the blood analyzer. For each

successive position of the red blood cell in the blood analyzer, the geometry of the

red blood cell is used to impose the conductivity field in the analyzer. This results,

through the electrostatic solver, in a value for the resistance of the system, which is

then compared to the resistance of the system in the absence of red blood cells. The

successive positions and shapes of the red blood cell leads to the generation of a value

for R along the trajectory of the red blood cell. This results in the reconstruction of

the electrical pulse as sketched in Fig. 5.16.
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∆
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Figure 5.16: Resistive pulse schematic representation (right) and successive positions of
a red blood cells in flow. (left)

5.5.3 Range of the study

In reality, the relationship of Eq. (5.27) that states that the electrical pulse amplitude

is directly related to the cell volume is true only for a population of cells that all

travel through the orifice with the same position, orientation and shape. To clarify, the

perturbation of the electrical field depends on the projected surface that is obstructed

by the red blood cell in the orifice. This projected surface depends on the orientation

and shape of the red blood cell (see Fig. 5.17). The position of the cell can also create

undesired effects if it happens to flow in the viscinity of the insulating walls of the

orifice.

a) b)

Figure 5.17: Schematic representation of the influence of the orientation of the cell on
the electrical field streamlines. From Isèbe and Nérin [96].
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Thus, this results in the possibility for a single red blood cell with a fixed volume

Vcell to generate more than one value of ∆R when measured in the blood analyzer, de-

pending on its position, orientation and shape. This leads to the necessity of performing

numerous simulations with different initial positions and orientations to understand the

importance of this effect on the volume measurement in the blood analyzer. This will

be discussed in more details in section 5.6.

5.5.4 Test case with a rigid particle

This test case is performed by Horiba Medical in the calibration procedure of their

devices. It consists in putting a rigid sphere made of latex in the blood analyzer. Since

its volume is known a priori, the device can be calibrated by using this measurement. It

is a reliable procedure because of the spherical symmetry of the particle, which ensures

the independence of the measurement on the orientation and shape of the particle.

This calibration procedure is reproduced using YALES2BIO. The latex sphere is of

diameter Dlatex = 5 µm and is found to generate a electrical pulse of amplitude of

∆R = 10.22 Ω traveling through the blood analyzer, which is in agreement with internal

reports from Horiba Medical.

5.6 The probability density function of volume

measurements

The post-processing step aims at constructing the probability density function of the

resistive pulse amplitude generated by a single cell and the volume probability density

function for a population of red blood cells. In order to obtain this statistical results,

an very large number of results would be required (at least 2 × 104). Obviously, full

numerical simulations using the YALES2BIO solver for this amount of simulations are

not possible because of the potential computational cost. Thus, a fitting procedure

is needed to perform the Monte-Carlo simulation in the input parameters (r0, θ0, ϕ0)

domains and increase the number of resistive pulse amplitude results available for the

statistical treatment of the results.

5.6.1 Why a statistical approach

A statistical approach is performed to generate the results of the volume measurement

of a red blood cell of fixed volume in the blood analyzer, depending on its orientation

and position. As stated previously, the amplitude ∆R of the electrical pulse generated

by the passage of a red blood cell depends on its orientation and position in the orifice.

The orientation and position of the red blood cell in the orifice depends on the initial

orientation (θ0, ϕ0) and position r0 of the red blood cell (at z0 = −R). However, the ini-

tial orientation and position of the cell at z0 are not known. Thus, the repartition of r0,
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θ0 and ϕ0 must be supposed a priori to compute the probability density function of ∆R.

The following sections detail the complete procedure that was used to generate the

probability density function of ∆R for a red blood cell of fixed volume. It goes as

follows:

• The probability density functions of r0, θ0 and ϕ0 are defined. (Section 5.6.2)

• Numerous numerical simulations are performed with (r0, θ0, ϕ0) as input param-

eters for a red blood cell of fixed volume. These simulations are used to generate

the value of ∆R corresponding to each triplet (r0, θ0, ϕ0) in YALES2BIO. (Sec-

tion 5.6.3)

• The results of ∆R = f(r0, θ0, ϕ0) are fitted to allow the drawing of any triplet

of values of (r0, θ0, ϕ0) and the computing of the corresponding value of ∆R.

(Section 5.6.4)

• Using a Monte-Carlo procedure, numerous triplets (r0, θ0, ϕ0) are drawn following

their respective probability density function. The resulting ∆R are computed us-

ing the fitted function, allowing the generation of the probability density function

of ∆R. (Section 5.6.5)

5.6.2 Random variables: initial position and orientation

In order to perform the Monte-Carlo simulations, it is necessary to select values for

(r, θ, ϕ). An a priori probability density has to be imposed on r, θ and ϕ. Obviously

the final results depend on this a priori distribution. In the absence of knowledge of

how cells are positioned, we make the assumption of uniform distribution of position

and orientation for cells located at z0 = −R and r ≤ 15 µm. We will see that this

assumption results in non-trivial distributions or r and θ.

Definition of the initial position and orientation

A single red blood cell is used in all the red blood cells dynamics simulations, as pre-

sented in Section 4.1.4. The dynamics simulations are not presented here as they have

been extensively described in Chapter 4. However, the definition of the initial location

and orientation is reminded. The initial position of the red blood cell in the numerical

domain is still defined by its position z0 along the blood analyzer axis (z-axis), which

is fixed:

z0 = −R, (5.28)

with R = 25 µm, the radius of the aperture (Fig. 5.18). This position was chosen so

that most of the acceleration phase is computed at a relatively reduced cost. From this

initial coordinate, three varying parameters arise in order to describe the red blood cell

position and orientation:
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• r, the initial position along the x-axis.

• θ and ϕ, two angles used to define the red blood cell orientation.

As it has been presented in Section 4.1.4, the acceptable range for r is defined using the

streamlines computed from the exit of the sample injection tube and the symmetries

of the problem. Red blood cells are considered to more or less follow the streamlines.

Shear-induced diffusion is neglected here, especially because the hematocrit in the sam-

ple is very low (0.01%− 0.05%) due to preliminary dilution of the blood sample. Thus,

due to the hydrofocalization, the red blood cells will travel in the region bounded by

those streamlines, which results in the following range for r, at z = −R (see Fig. 5.18):

• r ∈ [0; 15] µm.

Figure 5.18: Reduced configuration around the aperture with streamlines.

The local frame introduced in Section 4.1.4 is recalled on Fig. 5.19; it is used to

define angles θ and ϕ.

The local frame associated to the red blood cell is also briefly recalled: Figure 5.20

shows the ~xRBC and ~zRBC axes which are centered on the center of mass of the red

blood cell and aligned with the long and small radii of the cell, respectively. These two

axes are chosen to be in the (~xstream, ~zstream) plane, so that ~yRBC = ~ystream completes

the direct (~xRBC , ~yRBC , ~zRBC) orthonormal basis.
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~zstream

~xstream

~ystream

~zstream

~xstream

~ystream

Figure 5.19: Definition of axes ~xstream, ~ystream (normal to the plane), ~zstream in the
reduced configuration.

Figure 5.20: Representation of the red blood cell local frame and definition of θ and ϕ.

As seen on Fig. 5.20, the angle θ, which is the amount of rotation with respect to

the direction of ~zstream, is defined as,

cos θ = ~zRBC . ~zstream. (5.29)

The second angle, ϕ, is the amount of rotation around ~zstream.

cosϕ = ~xp . ~xstream, (5.30)

with ~xp, the projection of ~xRBC on the plane formed by ~xstream and ~ystream = ~y.

Considering the geometrical symmetries of the blood analyzer itself, as well as the ones

of the red blood cell. The resulting ranges for θ and ϕ are:

• θ ∈ [−90◦; 90◦].
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• ϕ ∈ [0◦; 90◦].

For more details about the initial state of the red blood cells, the reader is referred to

Section 4.1.4.

Probability density function of the initial position

Previously in this thesis, it has been stated that the red blood cells can arrive to the

entrance of the aperture at various positions along the x-axis (perpendicular to the

blood analyzer axis). Since this problem is 3-dimensional, the actual domain where a

red blood cell can pass through at z0 is a disc of center (0, 0, z0) and radius Rr = 15 µm

(see Fig. 5.21).

ψ

Figure 5.21: Schematic representation of the possible values for r.

If r is randomly selected between 0 and Rr and ψ randomly selected between 0◦ and

360◦ the sample points density will not be uniform, as it is seen on Fig. 5.22a. In order

to randomly choose a value for r on this disc with a uniform density of selected points

on the disc, the probability for a specific value of r to be drawn has to be computed.

A uniform distribution means that the surface density should be uniform. It is the

probability to choose r inside Ω, a full crown of surface dSΩ on the disc of surface Stot,

which can be written as,

PΩ =
dSΩ

Stot
, (5.31)

with,

Stot = πR2
r . (5.32)

Considering a surface element on the disc and using polar coordinates,

dSΩ = rdrdψ, (5.33)

the probability reads

PΩ =
rdrdψ

πR2
r

. (5.34)
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Since ψ is uniformly distributed over the considered range, the cumulative distribution

function Fr can be found by integrating this probability,

Fr =

∫ r

t=0

2tdt

R2
r

=
r2

R2
r

, (5.35)

This allows to perform a uniform random selection on Fr, computing the value for r

using:

r = Rr

√

Fr. (5.36)

Randomly and uniformly selecting the cumulative distribution function Fr in [0, 1] en-

sures a uniform density of selected initial positions for the cell, as shown on Fig. 5.22b.

a) b)

x (µm) x (µm)

y
(µ

m
)

Figure 5.22: Sample points selected on the disc of radius R = 15 µm for a) A random
selection of r ∈ [0; 15] µm and ψ in the disc, b) A random selection following Eq. (5.36).

Probability density function of the initial orientation

The orientation of the red blood cell can be defined by imposing the direction of the

unit vector zRBC . It is defined by a triplet of coordinates lying on a sphere centered

on the value of r for the considered case and of radius 1. Due to symmetries, only

half a sphere is needed. The classical spherical coordinates system is considered, with

θ′ the co-latitude and ϕ′ the azimuth angle. In this coordinates system, the bounds

for θ′ and ϕ′ are not the same as the one described earlier, notably, θ′ does not take

negative values in this case, and the range of possible values for ϕ′ is greater that the

one considered in section 4.1.4. If θ′ and ϕ′ are uniformly sampled in their own ranges,

the resulting selected vectors tips density on the surface of the sphere is non-uniform,

as seen in Fig. 5.24a. Using the same method as for the selection of r, θ′ and ϕ′ are
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chosen so that the vectors tips on the surface of the half-sphere of center r and radius

1 in the frame (xstream, ystream) display a uniform distribution.

θ′

ϕ′

Figure 5.23: Definition of angles θ′ and ϕ′.

The probability to choose θ′ and ϕ′ in a surface element of the sphere is found as,

PΩ =
sin θ′dθ′dϕ′

4π
. (5.37)

The cumulative distribution function Fθ′ is then computed as:

Fθ′ =

∫ t=θ′

t=0

sin tdt

2
=

1− cos θ′

2
, (5.38)

since ϕ′ is again uniformly distributed over the considered range. Thus, the value of θ′

can be computed from Fθ′ :

θ′ = arccos(1− 2Fθ′). (5.39)

Uniformly sampling Fθ′ in [0, 1] ensures a uniform density of selected orientations on

the sphere describing the possible initial orientations for the cell. After this random

selection is performed, a transformation is applied on θ′ and ϕ′ in order to retrieve the

more convenient definitions and bounds for θ and ϕ introduced in Section 4.1.4. It is

done using:










θ = θ′, ϕ = ϕ′ if ϕ′ < 90◦

θ = −θ′, ϕ = ϕ′ − 90◦ if ϕ′ > 90◦

. (5.40)

These definitions allow a better visualization of the results and better understanding of

the observed symmetries.
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Figure 5.24: zRBC vectors tips on the surface of the half-sphere, top-view for a) A
random selection of θ′ and ϕ′, b) A random selection following Eq. (5.39) for θ′ and
uniformly random for ϕ′.

The probability density functions presented in this section are chosen so that the

initial orientation and position of the cell is uniformly random at z0 = −R. This hy-

pothesis can be discussed, as chapter 4 shows that the red blood cells reorient themselves

along their travel inside the blood analysis. Thus, the probability of initial orientations

near θ0 = 90◦ (red blood cells’ long axes aligned with the direction of the flow) should

be higher than otherwise. However, this probability density cannot be derived from

chapter 4 easily and would be arbitrary, thus the choice has been made to consider a

uniformly random initial orientation and position.

5.6.3 Raw results

The presented numerical setup allows to perform and post-process numerous simulations

in order to find the dependence of ∆R on (r0, θ0, ϕ0). The performed cases have been

determined using a Latin Hypercube Sampling method [95]: each variable from the

(r, θ, ϕ) triplet is discretized in a specified number of sub-ranges. In each of these

sub-ranges, a value for each parameter is chosen randomly. This allows to probe the

resistance pulse amplitude for any possible case in the defined ranges for (r0, θ0, ϕ0).

In this work, r0, θ0 and ϕ0 have been discretized as follows:

• Variable r0, nr = 3 : r0 ∈ [5n; 5(n+ 1)] µm with n = 0, 1 or 2.

• Variable θ0, nθ = 10 : θ0 ∈ [18n◦; 18(n+ 1)◦] with n = −5, −4, ...4.

• Variable ϕ0, nϕ = 5 : ϕ0 ∈ [18n◦; 18(n+ 1)◦] with n = 0, 1, ..., 4.
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Figure 5.25: Representation of all the cases performed in the (r0, θ0, ϕ0) space.

Figure 5.25 illustrates the different cases performed. The grid lines indicates the

different ranges considered for each parameter for the Latin Hypercube Sampling. More

than 500 simulations have been performed over the full range of all parameters. Note

that the centered cases (r = 0 µm) have been omitted in Fig. 5.25 for readability, since

these cases can be expanded for all values of θ0 and ϕ0 thanks to the geometry and

red blood cell symmetries. The obtained results are the resistance pulses amplitude for

different values of the triplet (r0, θ0, ϕ0):

∆R = f(r0, θ0, ϕ0). (5.41)

The results are first presented as a function of one parameter, for all values for the

other two parameters for the sake of readability. Figures (5.26), (5.27) and (5.28) show

the variation of the resistance pulse amplitude ∆R as a function of θ0, r0, and ϕ0,

respectively. A strong dependence of ∆R on θ0 is found (Fig. 5.26). On the other hand,

no clear dependence of ∆R on both ϕ0 and r0 can be seen from Fig. 5.27 or 5.28.
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Figure 5.26: Resistance pulse amplitude versus θ0 for all values of ϕ0 and r0.
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Figure 5.27: Resistance pulse amplitude versus r0 for all values of θ0 and ϕ0.
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Figure 5.28: Resistance pulse amplitude versus ϕ0 for all values of θ0 and r0.

5.6.4 Fitting

Polynomial fitting

As seen in the previous section, the value of ∆R mostly depends on the value of θ0.

Only the dependence on θ0 is considered since the other two parameters, ϕ0 and r0, are

found not to significantly influence the results on the value of ∆R. If a polynomial of

degree Np is considered, ∆Rpoly = f(θ) reads,

∆Rpoly =

Np
∑

i=0

aiθ
i
0. (5.42)

The convenient degree for the polynomial fit is found using the root mean-square error

and the correlation coefficient. Polynomial with degrees Np ∈ [20; 50] produce a satis-

fying fitting of the results. Even if any value for Np between Np = 16 and Np = 50

correctly predicts the behavior of ∆R, the optimal and chosen value for Np is found

to be Np = 49 according to Fig. 5.29, with a correlation coefficient of 0.97 and a root

mean-square error of 0.45. In addition, a polynomial fitting of degree Np = 49 allows

the capture of higher values of ∆R.
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Figure 5.29: Root mean-square error (+) and correlation coefficient (◦) versus polyno-
mial degree.

The scatter plot for the Polynomial fitting is shown on Fig. 5.30. The fitting is seen

to correctly predict the behavior of the value of ∆R without the dependency on r0 and

ϕ0. Lower values of the electrical pulse amplitude ∆R are more correctly captured by

the polynomial fitting.

5.6.5 Probability density function

From the probability density functions of (r0, θ0, ϕ0) and the polynomial fitting, N

(N ≫ 1) results for ∆R are generated following the supposed distribution of (r0, θ0, ϕ0)

at z0 = −R. The results are then sorted in different classes depending on the value of

∆R

P (∆Rinf ≤ ∆R ≤ ∆Rsup) =
1

N

N
∑

i=1

F (∆Ri), (5.43)

where,

F (∆Ri) =











1 if ∆Rinf ≤ ∆Ri ≤ ∆Rsup

0 if not

, (5.44)
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Figure 5.30: Scatter plot of ∆Rpoly (with Np = 49) versus ∆RCF D.
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Figure 5.31: Probability density function for the resistance pulse amplitude.

From Table 5.2, the 95-th percentile allows the characterization of the accuracy

provided by a blood analyzer with hydrofocalization: 95% of the measurement will

show a resulting electrical pulse amplitude of around 13.27 Ω or less. Thus if the actual

volume of the cell is considered to be the value of ∆R for a centered cell with θ0 = 90◦
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Statistics on the polynomial approximation

Statistical quantity Polynomial

Mean value 11.04
Median value 10.71
Standard deviation 1.26
Skewness 4.13
Mean error 4.22%
95-th percentile 13.27 (25%)

Table 5.2: Main statistics of ∆R in the case of a polynomial fitting of the results

(∆R = 10.60 Ω), the error on the volume measurement will be less than 25% in 95% of

the cases. It is also found that the mean error on the measurement is around 4%.

Application to the generation of a complete volume probability density

function

In this section, results from the computed simulations are used to mimic the measure-

ment of the volume probability density function in a Coulter counter. The volume

probability density function is the distribution of measured volumes of a red blood cell

population that has traveled through the blood analyzer. The previous analysis was

performed for a unique value of volume. Here, we first assume that in a fictive blood

sample, there is a certain volume distribution. The volume distribution is supposed to

be Gaussian, with a mean value of 93.54 fL. and a standard deviation of 0.13 [? ]. This

probability density function thus reads:

p.d.f(V ) =
1

σ
√

2π
e

−(V −µ)2

2σ2 , (5.45)

with,

σ = 0.13 and µ = 93.54 fL. (5.46)

This is the assumed ’real’ distribution in a sample. The aim is now to apply the

procedure described earlier for one specific volume to this distribution of volume and

generate the probability density function of ∆R for the whole sample: f∆R is now

function of (r, θ, ϕ, V ). Thanks to the Monte-Carlo simulations, 20 millions values for

(r, θ, φ) are generated and used in this section. The 20 millions values for (r, θ, φ)

provide a collection of ∆R0 values generated from the polynomial fit of section 5.6.4.

For each value of ∆R0, a volume is selected following the physiological distribution of

red blood cells volumes of Eq. (5.45). A linearity hypothesis is then used to generate

the corresponding value of ∆R, it writes:

∆R =
V

V0
∆R0, (5.47)
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where V0 is the volume of the red blood cell used in all simulations. When this operation

is repeated over all of the values of ∆R0, a probability density function for ∆R of the

whole sample is found. Finally, a calibration procedure is introduced to retrieve the

measured volume distribution:

Vm = α∆R, with α =
Vc

∆Rc
. (5.48)

In this equation, the chosen values for ∆Rc and Vc define the calibration. Two options

were considered:

• Exact calibration: ∆Rc is chosen as the resistive pulse amplitude for a centered

cell with θ = 90◦ and Vc = V0.

• Latex sphere calibration: it follows the actual calibration process made by Horiba

medical experts. ∆Rc is chosen as the resistive pulse amplitude of a latex sphere

of diameter Dlatex = 5 µm, ∆Rc = 10.22 Ω, with Vc = Vlatex× f = 97.5 fL, where

f is a shape factor to account for the shape difference between the sphere and a

cell. Here, f = 1.5 as provided by Horiba Medical internal reports.
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Figure 5.32: Volume probability density function for different calibration values. Input
VD is the input volume distribution defined in Eq. (5.45), Observed VD are the observed
volume distributions with the two calibration methods described above.

From Fig. 5.32, the observed volume distribution depends on the calibration. All

the statistical quantities reported in Table. 5.3 show an increase compared to the input

volume distribution, which creates a systematic overestimation of the Mean Corpuscular

Volume (MCV) and Red Blood Cell Distribution Width (RDW). Obviously, the exact
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calibration does not create more error than the one measured for a single cell proba-

bility density function found in Fig. 5.31, around 4% on the MCV. The latex sphere

calibration, where a latex sphere is used as a reference particle as described previously,

introduced an error of around 12% on the MCV. Both calibration methods show an

increase of around 15% on the observed RDW, compared to the actual input RDW.

Note also that the right skewness in the observed volume distributions is in agreement

with the literature [28].

Statistical quantity Input VD OVD (Exact) OVD (Latex)

Mean value 93.546 97.106 104.95
Median value 93.538 96.064 103.820
Standard deviation 0.130 0.161 0.167
Skewness 0.0 0.816 0.817
Red Blood Cell Distribution Width 13% 15% 15%
Mean error 0% 3.80% 12.19%

Table 5.3: Quality of the measurement of the volume distribution in the blood analyzer.

5.7 Discussion

These results show that the numerical tool developed in this thesis is able to reproduce

the measured volume distribution from an input healthy red blood cells volume distri-

bution and the bank of results used to generate the fitting function of ∆R. Thus, this

numerical tool can be used more widely for different configurations or calibration proce-

dures. It is robust enough to handle complicated geometries and flows. It is important

to note that the previous results depend on all of the assumptions made for the con-

struction of the probability density functions. Namely, the distribution of θ0, found by

considering a uniform probability for the orientation of the cell is strong, as it neglects

the reorientation phenomena that may happen before the deposition at z0 = −R. This

kind of assumption can introduce errors that are most likely found in non-hydrofocalized

systems.
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This section aims at summarizing the work done in this thesis. Then, it discusses

some perspectives of this work and the possibilities of further research offered by the

results. Finally, a concluding remark is presented.

6.1 Main results

This thesis presents a numerical and analytical study of the dynamics of red blood

cells under flow. This thematic has known a tremendous development in the last years.

However, this work is original compared to the literature on the topic, because it fo-

cuses on the behavior of red blood cells in flows with a strong elongational character,

characteristic of what is found in hydrofocalized blood analyzers based on the Coulter

principle. This thesis establishes results on the reorientation of particles in elongational

flows through the development of analytical models.

The analytical developments of Chapter 3 allow a better understanding of the phys-

ical effects taking part in the reorientation process of particles in elongational flows:

the Keller & Skalak and Abkarian, Faivre & Viallat models, originally developed for

pure shear flows, are re-derived in this context. The former considers a rigid ellipsoidal

particle with an imposed membrane velocity. The latter adds the contribution of the
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elasticity of the membrane to the Keller & Skalak model. Both are used to predict

the orientation of the cell in an elongational flow. It is found that in the limit of infi-

nite capillary number values, the Abkarian, Faivre & Viallat (AFV) model is found to

converge towards the Keller & Skalak model (K&S). In the limit of vanishing capillary

number, the AFV model converges towards Jeffery’s theory for rigid ellipsoidal particles.

Finally, both the AFV and K&S models are found to converge towards Jeffery’s theory

for higher values of the viscosity ratio (µext/µint). This latter analytical model shows

a clear reorientation of the cell with the axis of elongation in all cases. The viscosity

ratio has an important influence on the reorientation phenomenon, slowing it down for

higher values. The contribution of the elasticity introduced through the AFV model is

seen to slow down the reorientation as it accounts for the storing of the elastic energy

in the membrane and induces changes in the membrane motion.

Numerical simulations of the dynamics of red blood cells in a configuration charac-

teristic of hydrofocalized Coulter counters are presented. They show the reorientation

phenomenon of centered red blood cells in the blood analyzer. The results clearly show

this trend even in the case of a ”late” upstream deposition in the blood analyzer. The

first contribution to this reorientation process is the velocity field, the elongational char-

acter of the flow forcing the red blood cells to align with the flow. Then, the deformation

is seen to contribute in lower angles cases, as the initial deformation has a greater im-

pact on the reorientation. Another important effect is the viscosity ratio: it is seen to

play an important role in the reorientation process. Cells with lower viscosity ratios

are seen to align themselves with the direction of the flow more rapidly than cells with

higher viscosity ratios, in agreement with analytical models. The viscosity ratio is also

observed to have more effect on lower angles case, as it modifies the cell ability to resist

deformation in the initial moments of the simulation.

Finally, a prediction of the electrical measurement of the volume of red blood cells

in an industrial blood analyzer is performed. The order of magnitude of the electrical

pulse found in experimental conditions is correctly retrieved. The dependence of the

electrical pulse on the initial position and orientation of the flowing cell is investigated:

the whole range of the input parameters are probed in order to accurately fit the results

from an extensive numerical database. This fitting is later used in a statistical approach

to produce a probability density function of the electrical pulse amplitude, which is the

quantity from which volume is measured. It is found that the fact that red blood cells

align themselves with the axis of the blood analyzer results in a homogenization of the

electrical response, where a large majority of cells are seen to produce an electrical pulse

of similar amplitude. From this probability density function, the measure of a complete

healthy red blood cell population is simulated. It is found that discrepancies in the cell

alignment would add a right skewness and a tail to the distribution of volumes, thus

over-estimating the number of higher volume red blood cells.

These results stress the advantages of hydrofocalization in the context of red blood
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cell volumetry: the first effect of hydrofocalization is to force the cells to flow through

the center of the orifice, thus avoid them to interact with the complex electrical field that

is present near the walls of the orifice. A second effect, probably even more important,

is the reorientation of the cells. The latter not only flow in the center of the orifice,

but the strong elongational flow makes them accelerate and reorient to be aligned with

the flow, whatever their orientation before the acceleration. Hydrofocalization is thus

extremely beneficial in terms of robustness and accuracy of volume measurements.

6.2 Perspectives

6.2.1 Alternative geometries

It would be of great interest to perform the same study on systems that are not hy-

drofocalized, as it would allow a characterization of the importance of its effect. Also,

the optimization of the current geometry, namely in terms of sheathing flows and their

flow rates, would be interesting and preview simple improvements of an actual device.

In order to understand the importance of the velocity field and possibly to increase the

speed of the reorientation phenomenon, alternative geometries can be used. Notably,

the hydrofocalization can be tuned to impose a stiffer velocity field that will flip the red

blood cells in alignment with the flow in a shorter time. In addition, the velocity field

could be manipulated in order to avoid undesirable effects such as close cells doublets

which contribute to the overestimation of the number of higher volume red blood cells

in experimental measurements. If the red blood cells membrane was found to break

during the measurement, the modification of the velocity field could also help maintain

the cells integrity. This kind of studies could help the design of more reliable devices

and ensure non-destructive processes.

6.2.2 Red blood cell mechanics

The red blood cell mechanics described and used for the simulations in this work are

of satisfying accuracy. As the validation test cases demonstrated it, all of the main

features and behaviors of the red blood cell are retrieved. Still, some of the extreme

cases are not well reproduced, and some effects could thus be added to the cell: the

visco-elasticity of the membrane that can contribute to the dynamics of red blood cells,

or the thickness of the membrane that should offer a more natural way of modeling the

curvature resistance of the cell membrane are examples.

A completely different modeling framework could also be considered, either a less refined

one where it would be interesting to see if the features of the reorientation phenomenon

are retrieved or a more refined one that might let more complicated effects play a role in

the measurement process. For example, the modeling of the bilayer structure of the red

blood cells or the viscosity of the membrane viscosity could slow down the deformation

and reorientation.
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6.2.3 Cell-cell interaction

The interaction between cells might have an important effect on the orientation phe-

nomenon and in the measurement of the cell volume in the blood analyzer. The interac-

tion of red blood cells happening in the injection tube notably, could have a significant

effect on the resulting orientation in the micro-orifice. Aside from this indirect effect,

some of the recent experimental measurements show that two red blood cells can stay

very close during their travel in the blood analyzer. The numerical simulation of this

kind of event is of interest, as it could help its detection from the experimental electrical

pulse. Moreover, it could provide insights on how to design the blood analyzer in order

to avoid this situation.

6.2.4 Electrical modeling

The current framework for the electrical modeling of red blood cells is simplified, in

order to allow fast computations and easier understanding of the results. Still, as

it as been discussed in the first part of Chapter 5, many effects can arise from the

influence of an electrical field on the cell membrane. It would be of interest to model

more complicated electrical effects. Notably, the dynamical modification of the electrical

field could be considered and investigated further if the static approximation is no longer

made. Also, the interdependence of the generated electrical field and the resulting field

in the membrane could have effects on the cell shape, orientation and trajectory.

6.3 Concluding remark

An important result of this thesis is the actual numerical tool and framework for the

simulation of the dynamics of red blood cells in blood analyzers and the associated

volume distribution measurement. It can be used with different configurations and

will certainly allow a faster study of the flow and dynamics of red blood cells in such

devices. The reproduction of the electrical measurement also allows the characterization

of the principal components of this measurement, and how the future devices should

be designed in order to ensure satisfying accuracy. This suggests that YALES2BIO

could be an important numerical tool for designing medical devices but also for the

understanding of the dynamics of cells in ex-vivo contexts.
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ble. Joseph Fourier, 2009.

[134] J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh. Nonlinear elastic and

viscoelastic deformation of the human red blood cell with optical tweezers. Mech.

Chem. Biosys., 1(3):169–180, 2004.

[135] C. Misbah. Vacillating breathing and tumbling of vesicles under shear flow. Phys.

Rev. Lett., 96(028104), 2006.

[136] N. Mohandas and E. A. Evans. Mechanical properties of the red cell membrane in

relation to molecular structure and genetic defects. Ann. Rev. Biophys. Biomol.

Struct., 23:787–818, 1994.

[137] V. Moureau, P. Domingo, and L. Vervisch. Design of a massively parallel CFD

code for complex geometries. Comp. Rend. Méc., 339(2-3):141–148, 2011.

[138] V. Narsimhan, A. Spann, and E. S. G. Shaqfeh. The mechanism of shape insta-

bility for a vesicle in extensional flow. J. Fluid Mech., 750:144–190, 2014.

[139] V. Narsimhan, H. Zhao, and E. S. G. Shaqfeh. Coarse-grained theory to predict

the concentration distribution of red blood cells in wall-bounded Couette flow at

zero Reynolds number. Phys. Fluids, 25(061901), 2013.

[140] H. Noguchi and G. Gompper. Fluid vesicles with viscous membranes in shear

flow. Phys. Rev. Lett., 93(258102), 2004.

[141] H. Noguchi and G. Gompper. Dynamics of fluid vesicles in shear flow: Effect of

membrane viscosity and thermal fluctuations. Phys. Rev. E, 72(011901), 2005.

[142] H. Noguchi and G. Gompper. Shape transitions of fluid vesicles and red blood

cells in capillary flows. Proc. Natl Acad. Sc. USA, 102(40):14159–14164, 2005.

[143] H. Noguchi and G. Gompper. Swinging and tumbling of fluid vesicles in shear

flow. Phys. Rev. Lett., 98:128103, 2007.

[144] W. Pan, B. Caswell, and G. E. Karniadakis. A low-dimensional model for the red

blood cell. Soft Mat., 6:4366–4376, 2010.

[145] Z. Peng, R. J. Asaro, and Q. Zhu. Multiscale simulation of erythrocyte mem-

branes. Phys. Rev. E, 81(031904), 2010.

[146] Z. Peng, R. J. Asaro, and Q. Zhu. Multiscale modelling of erythrocytes in Stokes

flow. J. Fluid Mech., 686:299–337, 2011.



166 BIBLIOGRAPHY

[147] Z. Peng, A. Mashayekh, and Q. Zhu. Erythrocyte responses in low-shear-rate

flows: effects of non-biconcave stress-free state in the cytoskeleton. J. Fluid

Mech., 742:96–118, 2014.

[148] C. S. Peskin. The immersed boundary method. Acta Num., 11:479–517, 2002.
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